Thes-th higher topological complexity{\operatorname{TC}_{s}(X)}of a spaceXcan be estimated from above by homotopical methods, and from below by homological methods. We give a thorough analysis of the gap between such estimates when{X=\operatorname{\mathbb{R}P}^{m}}, the real projective space of dimensionm. In particular, we describe a number{r(m)}, which depends on the structure of zeros and ones in the binary expansion ofm, and with the property that{0\leq sm-\operatorname{TC}_{s}(\operatorname{\mathbb{R}P}^{m})\leq\delta_{s}(% m)}for{s\geq r(m)}, where{\delta_{s}(m)=(0,1,0)}for{m\equiv(0,1,2)\bmod 4}. Such an estimation for{\operatorname{TC}_{s}(\operatorname{\mathbb{R}P}^{m})}appears to be closely related to the determination of the Euclidean immersion dimension of{\operatorname{\mathbb{R}P}^{m}}. We illustrate the phenomenon in the case{m=3\cdot 2^{a}}. In addition, we show that, for large enoughsand evenm,{\operatorname{TC}_{s}(\operatorname{\mathbb{R}P}^{m})}is characterized as the smallest positive integer{t=t(m,s)}for which there is a suitable equivariant map from Davis’ projective product space{\mathrm{P}_{\mathbf{m}_{s}}}to the{(t+1)}-st join-power{((\mathbb{Z}_{2})^{s-1})^{\ast(t+1)}}. This is a (partial, but conjecturally complete) generalization of the work of Farber, Tabachnikov and Yuzvinsky relating{\operatorname{TC}_{2}}to the immersion dimension of real projective spaces.
Starting from Borel's description of the mod-2 cohomology of real flag manifolds, we give a minimal presentation of the cohomology ring for semi complete flag manifolds F k,m := F (1, . . . , 1, m) where 1 is repeated k times. The information is used in order to estimate Farber's topological complexity of these spaces when m approaches (from below) a 2-power. In particular, we get almost sharp estimates for F 2,2 e −1 which resemble the known situation for the real projective spaces F 1,2 e . Our results indicate that the agreement between the topological complexity and the immersion dimension of real projective spaces no longer holds for other flag manifolds. More interestingly, we also get corresponding results for the s-th (higher) topological complexity of these spaces. Actually, we prove the surprising fact that, as s increases, the estimates become stronger. Indeed, we get several full computations of the higher motion planning problem of these manifolds. This property is also shown to hold for surfaces: we get a complete computation of the higher topological complexity of all closed surfaces (orientable or not). A homotopy-obstruction-theory explanation is included for the phenomenon of having a cohomologically accessible higher topological complexity even when the regular topological complexity is not so accessible.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.