Recent studies have reported that CRP levels are elevated in patients with COVID-19 and may correlate with severity of disease and disease progression. We conducted a retrospective cohort analysis of the medical records of 268 adult patients, who were admitted to one of the six cohorted COVID ICUs across Emory Healthcare System and had at least two CRP values within the first seven days of admission to study the temporal progression of CRP and its association with all-cause in-hospital mortality. The median CRP during hospitalization for the entire cohort was 130 mg/L (IQR 82–191 mg/L), and the median CRP on ICU admission was 169 (IQR 111–234). The hospitalization-wide median CRP was significantly higher amongst the patients who died, compared to those who survived [206 mg/L (157–288 mg/L) vs 114 mg/L (72–160 mg/L), p<0.001]. CRP levels increased in a linear fashion during the first week of hospitalization and peaked on day 5. Compared to patients who died, those who survived had lower peak CRP levels and earlier declines. CRP levels were significantly higher in patients who died compared to those who survived (p<0.001). Our findings support the utility of daily CRP values in hospitalized COVID-19 patients and provide early thresholds during hospitalization that may facilitate risk stratification and prognostication.
Background There is limited data on the markers of coagulation and hemostatic activation (MOCHA) profile in Coronavirus disease 2019 (COVID-19) and its ability to identify COVID-19 patients at risk for thrombotic events and other complications. Methods Hospitalized patients with confirmed SARS-COV-2 from four Atlanta hospitals were included in this observational cohort study and underwent admission testing of MOCHA parameters (plasma d-dimer, prothrombin fragment 1.2, thrombin-antithrombin complex, fibrin monomer). Clinical outcomes included deep vein thrombosis, pulmonary embolism, myocardial infarction, ischemic stroke, access line thrombosis, ICU admission, intubation and mortality. Main results Of 276 patients (mean age 59 ± 6.4 years, 47% female, 62% African American), 45 (16%) had a thrombotic endpoint. Each MOCHA parameter was independently associated with a thrombotic event (p<0.05) and ≥ 2 abnormalities was associated with thrombotic endpoints (OR 3.3, 95% CI 1.2–8.8) as were admission D-dimer ≥ 2000 ng/mL (OR 3.1, 95% CI 1.5–6.6) and ≥ 3000 ng/mL (OR 3.6, 95% CI 1.6–7.9). However, only ≥ 2 MOCHA abnormalities were associated with ICU admission (OR 3.0, 95% CI 1.7–5.2) and intubation (OR 3.2, 95% CI 1.6–6.4). MOCHA and D-dimer cutoffs were not associated with mortality. MOCHA with <2 abnormalities (26% of the cohort) had 89% sensitivity and 93% negative predictive value for a thrombotic endpoint. Conclusions An admission MOCHA profile is useful to risk-stratify COVID-19 patients for thrombotic complications and more effective than isolated d-dimer for predicting risk of ICU admission and intubation.
Background: Coronavirus disease 2019 (COVID-19) has been associated with a coagulopathy giving rise to venous and arterial thrombotic events. The objective of our study was to determine whether markers of coagulation and hemostatic activation (MOCHA) on admission could identify COVID-19 patients at risk for thrombotic events and other complications. Methods: COVID-19 patients admitted to a tertiary academic healthcare system from April 3, 2020 to July 31, 2020 underwent standardized admission testing of MOCHA profile parameters (plasma d-dimer, prothrombin fragment 1.2, thrombin-antithrombin complex, and fibrin monomer) with abnormal MOCHA defined as ≥ 2 markers above the reference. Prespecified thrombotic endpoints included deep vein thrombosis, pulmonary embolism, myocardial infarction, ischemic stroke, and access line thrombosis; other complications included ICU admission, intubation and mortality. We excluded patients on anticoagulation therapy prior to admission and those who were pregnant. Results: Of 276 patients (mean age 59 ± 6.4 years, 47% female, 62% African American race) who met study criteria, 45 (16%) had a thrombotic event. Each coagulation marker on admission was independently associated with a vascular endpoint (p<0.05). Admission MOCHA with ≥ 2 abnormalities (n=203, 74%) was associated with in-hospital vascular endpoints (OR 3.3, 95% CI 1.2-8.8), as were admission D-dimer ≥ 2000 ng/mL (OR 3.1, 95% CI 1.5-6.6), and admission D-dimer ≥ 3000 ng/mL (OR 3.6, 95% CI 1.6-7.9). However, only admission MOCHA with ≥ 2 abnormalities was associated with ICU admission (OR 3.0, 95% CI 1.7-5.2) and intubation (OR 3.2, 95% CI 1.6-6.4), while admission D-dimer ≥ 2000 ng/mL and admission D-dimer ≥ 3000 ng/mL were not associated. MOCHA and D-dimer cutoffs were not associated with mortality. Admission MOCHA with <2 abnormalities (26% of the cohort) had a sensitivity of 88% and negative predictive value of 93% for a vascular endpoint. Conclusions: Admission MOCHA with ≥ 2 abnormalities identified COVID-19 patients at increased risk of ICU admission and intubation during hospitalization more effectively than isolated admission D-dimer measurement. Admission MOCHA with <2 abnormalities identified a subgroup of patients at low risk for vascular events. Our results suggest that an admission MOCHA profile can be useful to risk-stratify COVID-19 patients.
Introduction: COVID-19 has been associated with venous and arterial thrombotic complications. The objective of our study was to determine whether markers of coagulation and hemostatic activation (MOCHA) on admission could identify COVID-19 patients at risk for thrombotic events. Methods: COVID-19 patients admitted to a tertiary academic healthcare system from April 3, 2020 to July 31, 2020 underwent admission testing of MOCHA profile parameters (plasma d-dimer, prothrombin fragment 1.2, thrombin-antithrombin complex, and fibrin monomer). For this analysis we excluded patients on outpatient anticoagulation therapy preceding admission. Prespecified endpoints monitored during hospitalization included deep vein thrombosis, pulmonary embolism, myocardial infarction, ischemic stroke and access line thrombosis. Results: During the study period, 276 patients were included in the analysis cohort (mean age 59 ± 6.3 years, 47% female, 83% non-white race). Arterial and venous thrombotic events occurred in 43 (16%) patients (see Table). Each coagulation marker was independently associated with the composite endpoint (p<0.05). Admission MOCHA with ≥ 2 abnormalities was associated with the composite endpoint (OR 3.1, 95% CI 1.2-8.3), ICU admission (OR 3.2, 95% CI 1.8-5.5) and intubation (OR 2.8, 95% CI 1.5-5.5). Admission MOCHA with < 2 abnormalities (26% of the cohort) had sensitivity of 88% and a negative predictive value of 93% for an in-hospital endpoint. Conclusion: Admission MOCHA with ≥ 2 abnormalities identified COVID-19 patients at risk for a thrombotic event, ICU admission and intubation while < 2 abnormalities identified a subgroup of patients who were at low risk for thrombotic events. Our results suggest that an admission MOCHA profile can be useful to risk stratify COVID-19 patients. Further studies are needed to determine whether an admission MOCHA profile can guide anticoagulation therapy and improve overall clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.