In this paper, we studied a stochastic bi-objective mathematical model for effective and reliable rescue operations in multigraph network. The problem is addressed by a two-stage stochastic nonlinear mixed-integer program where the reliability of routes is explicitly traded-off with total weighted completion time. The underlying transportation network is able to keep a group of multiattribute parallel arcs between every pair of nodes. By this, the proposed model should consider the routing decision in logistic planning along with the path selection in an uncertain condition. The first stage of the model concerns with the vehicle routing decisions which is not involved with random parameters; besides, the second stage of the model involves with the departure time at each demand node and path finding decisions after observation of random vectors in the first stage considering a finite number of scenarios. To efficiently solve the presented model, an enhanced nondominated sorting genetic algorithm II (NSGA-II) is proposed. The effectiveness of the introduced method is then evaluated by conducting several numerical examples. The results implied the high performance of our method in comparison to the standard NSGA-II. In further analyses, we investigated the beneficiary of using multigraph setting and showed the applicability of the proposed model using a real transportation case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.