One of the challenges during a taskoriented chatbot development is the scarce availability of the labeled training data. The best way of getting one is to ask the assessors to tag each dialogue according to its intent. Unfortunately, performing labeling without any provisional collection structure is difficult since the very notion of the intent is ill-defined.In this paper, we propose a hierarchical multimodal regularized topic model to obtain a first approximation of the intent set. Our rationale for hierarchical models usage is their ability to take into account several degrees of the dialogues relevancy. We attempt to build a model that can distinguish between subject-based (e.g. medicine and transport topics) and action-based (e.g. filing of an application and tracking application status) similarities. In order to achieve this, we divide set of all features into several groups according to part-of-speech analysis. Various feature groups are treated differently on different hierarchy levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.