Whilst offering numerous benefits to patients, minimally invasive surgery (MIS) has a disadvantage in the loss of tactile feedback to the surgeon, traditionally offering valuable qualitative tissue assessment, such as tumour identification and localisation. Tactile sensors aim to overcome this loss of sensation by detecting tissue characteristics such as stiffness, composition and temperature. Tactile sensors have previously been incorporated into MIS robotic end effectors, which require lengthy scanning procedures due to localised sensitivity. Distributed tactile sensors, or "artificial skin" offer a map of tissue properties in a single instance but are often not suitable for MIS applications due to limited biocompatibility or large collapsed volumes. We propose a deployable, soft, tactile sensor with a deformable saline chamber and integrated Electrical Impedance Tomography (EIT) electrodes. During contact with tissue, the saline is displaced from the chamber and the lesion size and stiffness can be inferred from the resultant impedance changes. Through optimisation of the EIT measurement protocol and hardware the sensor was capable of localising the centre of mass of palpation targets within 1.5 mm in simulation and 2.3-4.6mm in phantom experiments. Reconstructed image metrics differentiated target objects from 8-30 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.