Tetra(aryl)tetracyanoporphyrazines are the promising group of dyes for photodynamic therapy of tumors with unique combination of photosensitizer properties and sensitivity of fluorescence parameters to the environment viscosity. However, in vivo application of such hydrophobic photosensitizers requires using of drug carriers ensuring efficient delivery to the tumor site. The present study is focused on obtaining liposomes loaded with tetrakis(4-benzyloxyphenyl)tetracyanoporphyrazine and examining their properties depending on lipid composition. An efficient loading of the dye and a high long-term stability were proved for the liposomes composed of phosphatidylcholine with cholesterol and phosphatidylglycerol. This can be explained by the presence of negatively charged lipids in the bilayer and, as a consequence, a high value of the surface potential. A high rate of cellular uptake and a strong photoinduced toxicity give the prerequisites for the further use of the liposomal form of the photosensitizer for photodynamic therapy of tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.