Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell–intrinsic effects of autophagy can be both tumor suppressive and tumor promotional. Autophagy can therefore not only activate and inhibit cell death, but also facilitate the switch between cell death mechanisms. Moreover, autophagy can play opposing roles in the tumor microenvironment via non–cell-autonomous mechanisms. Preclinical data support a tumor-promotional role of autophagy in established tumors and during cancer therapy; this has led to the launch of dozens of clinical trials targeting autophagy in multiple cancer types. However, many questions remain: which tumors and genetic backgrounds are the most sensitive to autophagy inhibition, and which therapies should be combined with autophagy inhibitors? Additionally, since cancer cells are under selective pressure and are prone to adaptation, particularly after treatment, it is unclear if and how cells adapt to autophagy inhibition. Here we review recent literature addressing these issues.
Macroautophagy/autophagy degrades proteins and organelles to generate macromolecular building blocks. As such, some cancer cells are particularly dependent on autophagy. In a previous paper, we found that even highly autophagy-dependent cancer cells can adapt to circumvent autophagy inhibition. However, it remains unclear if autophagy-dependent cancer cells could survive the complete elimination of autophagosome formation. We extended our previous findings to show that knockout (KO) of both the upstream autophagy regulator RB1CC1/FIP200 and the downstream regulator and mediator of LC3 conjugation, ATG7, strongly inhibits growth in highly autophagy-dependent cells within one week of editing. However, rare clones survived the loss of ATG7 or RB1CC1 and maintained growth even under autophagy-inducing conditions. Autophagy-dependent cells circumvent the complete loss of autophagy that is mediated by RB1CC1 KO, similar to the loss of ATG7, by upregulating NFE2L2/NRF2 signaling. These results indicate that cancer cell lines could adapt to the complete loss of autophagy by changing their biology to adopt alternative ways of dealing with autophagy-mediated cellular functions.
Autophagy inhibition improves the effectiveness and overcomes RAF pathway inhibition (RAFi) resistance across multiple CNS tumors and molecularly distinct resistance mechanisms. Mechanistic links between autophagy and apoptotic cell death may explain this ability to improve RAFi response and reverse resistance. RAFi sensitive (MAF 794, AM38) and resistant (MAF 794R, MAF 905-3, AM38R, B76) BRAFV600E CNS tumor cell lines were analyzed at baseline, following RAFi (vemurafenib), autophagy inhibition (chloroquine or shRNAs), and combination therapy. Growth assays and caspase activation were monitored by Incucyte Zoom. qRT-PCR evaluated key pro-apoptotic BH3-only members of the BCL-2 family. Broad BH-3 profiling was completed using the Letai JC-1 Plate-Based protocol. Western blot analysis assessed protein levels. Combination pharmacologic treatment caused alterations in key pro-apoptotic BH3-only proteins including an increase in BNIP3L and PUMA. Genetically inhibiting autophagy with shRNAs for ATG5 and ATG7 (proteins required for formation of the autophagosome) produced similar results with increases in both protein and mRNA levels of BNIP3L and PUMA following RAFi treatment. This suggested autophagy-mediated regulation of BH3 proteins functions to determine cellular apoptotic threshold. Caspase activation demonstrated increased effectiveness of combined RAFi and autophagy inhibition overcoming the apoptotic threshold compared to single drug treatment. BH3 profiling demonstrated a dependence on BCL-2 to inhibit apoptosis. BH3 mimetics competitively bind to pro-survival BCL-2 family members, blocking their protective effects and pushing tumor cells towards apoptosis. Autophagy inhibition can also improve treatment response by overcoming the apoptotic threshold in RAFi resistant cells and magnifying the apoptotic response in sensitive cells. BH3 profiling reveals CNS BRAFV600E are BCL-2 dependent cells, unprimed for apoptosis, which may be good candidates for additional treatment with BH3 mimetics such as venetoclax. This presents an attractive treatment for MAPK activated CNS tumors by enhancing apoptotic cell death by targeting the MAPK pathway, autophagy and BH3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.