Salicylate, a plant product, has been in medicinal use since ancient times. More recently it has been replaced by synthetic derivatives such as aspirin and salsalate, both rapidly broken down to salicylate in vivo. At concentrations reached in plasma following administration of salsalate, or aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator, A-769662, to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, Thr172. In AMPK knockout mice, effects of salicylate to increase fat utilization and lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.The medicinal effects of willow bark have been known since the time of Hippocrates. The active component is salicylate, a hormone produced by plants in response to pathogen infection (1). For medicinal use it was largely replaced by aspirin (acetyl salicylate), which is rapidly broken down to salicylate in vivo (2, 3). Salicylate can also be administered as salsalate, which shows promise for treatment of insulin resistance and type 2 diabetes (4, 5). Aspirin and salicylate inhibit cyclo-oxygenases and hence prostanoid biosynthesis (6), as well as the protein kinase IKKβ in the NF-κB pathway (7). However, some effects of these drugs are still observed in mice deficient in these pathways (8).Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor conserved throughout eukaryotes. This heterotrimeric enzyme is composed of catalytic α Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts subunits and regulatory β and γ subunits (9, 10). Once activated in response to metabolic stress, AMPK phosphorylates targets that switch off adenosine triphosphate (ATP) consuming processes, while switching on catabolic pathways that generate ATP. AMPK is activated >100-fold by phosphorylation at Thr172 in the α subunit by the tumour suppressor protein kinase, LKB1, or the Ca 2+ -dependent kinase, CaMKKβ (9, 10). Binding of AMP or adenosine diphosphate (ADP) to the γ subunit triggers a conformational change that promotes phosphorylation and inhibits dephosphorylation (11-15), causing a switch to the active form. Binding of AMP (but not ADP) to a second site (15) causes further allosteric activation, leading to >1,000-fold activation overall (16). Most drugs or xenobiotics that activate AMPK work by inhibiting mitochondrial ATP synthesis and increasing the concentration of AMP and ADP (17). However, a synthetic activator, A-769662 (18), which also causes allosteric activation and inhibits Thr172 dephosphorylation, binds directly to AMPK at distinct site(s) (19-21).Salicylate, but not aspirin, activated AMPK when applied to HEK-293 cells, with its effects being significant at 1 mM and above ( Fig. 1A; it appears that the estera...
Abstract-The predominant cardiac Ca 2ϩ /calmodulin-dependent protein kinase (CaMK) is CaMKII␦. Here we acutely overexpress CaMKII␦ C using adenovirus-mediated gene transfer in adult rabbit ventricular myocytes. This circumvents confounding adaptive effects in CaMKII␦ C transgenic mice. CaMKII␦ C protein expression and activation state (autophosphorylation) were increased 5-to 6-fold. Basal twitch contraction amplitude and kinetics (1 Hz) were not changed in CaMKII␦ C versus LacZ expressing myocytes. However, the contraction-frequency relationship was more negative, frequency-dependent acceleration of relaxation was enhanced ( 0.5Hz / 3Hz ϭ2.14Ϯ0.10 versus 1.87Ϯ0.10), and peak Ca 2ϩ current (I Ca ) was increased by 31% (Ϫ7.1Ϯ0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.