The obesity epidemic has led to an increased incidence of non–alcoholic fatty liver disease (NAFLD) and type 2 diabetes. AMP–activated protein kinase (Ampk) regulates energy homeostasis and is activated by cellular stress, hormones and the widely prescribed anti–type 2 diabetic drug metformin1,2. Ampk phosphorylates murine acetyl–CoA carboxylase3,4 (Acc) 1 at Ser79 and Acc2 at Ser212, inhibiting the conversion of acetyl–CoA to malonyl–CoA, a precursor in fatty acid synthesis5 as well as an allosteric inhibitor of fatty acid transport into mitochondria for oxidation6. To test the physiological impact of these phosphorylation events we generated mice with alanine knock–in mutations in both Acc1 (Ser79) and Acc2 (Ser212) (Acc double knock–in, AccDKI). These mice have elevated lipogenesis and lower fatty acid oxidation compared to wild–type (WT) mice, which contribute to the progression of insulin resistance, glucose intolerance and NAFLD, but not obesity. Remarkably, AccDKI mice made obese by high–fat feeding, are refractory to the lipid–lowering and insulin–sensitizing effects of metformin. These findings establish that inhibitory phosphorylation of Acc by Ampk is essential for the control of lipid metabolism, and in the setting of obesity, for metformin–induced improvements in insulin action.
Salicylate, a plant product, has been in medicinal use since ancient times. More recently it has been replaced by synthetic derivatives such as aspirin and salsalate, both rapidly broken down to salicylate in vivo. At concentrations reached in plasma following administration of salsalate, or aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator, A-769662, to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, Thr172. In AMPK knockout mice, effects of salicylate to increase fat utilization and lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.The medicinal effects of willow bark have been known since the time of Hippocrates. The active component is salicylate, a hormone produced by plants in response to pathogen infection (1). For medicinal use it was largely replaced by aspirin (acetyl salicylate), which is rapidly broken down to salicylate in vivo (2, 3). Salicylate can also be administered as salsalate, which shows promise for treatment of insulin resistance and type 2 diabetes (4, 5). Aspirin and salicylate inhibit cyclo-oxygenases and hence prostanoid biosynthesis (6), as well as the protein kinase IKKβ in the NF-κB pathway (7). However, some effects of these drugs are still observed in mice deficient in these pathways (8).Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor conserved throughout eukaryotes. This heterotrimeric enzyme is composed of catalytic α Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts subunits and regulatory β and γ subunits (9, 10). Once activated in response to metabolic stress, AMPK phosphorylates targets that switch off adenosine triphosphate (ATP) consuming processes, while switching on catabolic pathways that generate ATP. AMPK is activated >100-fold by phosphorylation at Thr172 in the α subunit by the tumour suppressor protein kinase, LKB1, or the Ca 2+ -dependent kinase, CaMKKβ (9, 10). Binding of AMP or adenosine diphosphate (ADP) to the γ subunit triggers a conformational change that promotes phosphorylation and inhibits dephosphorylation (11-15), causing a switch to the active form. Binding of AMP (but not ADP) to a second site (15) causes further allosteric activation, leading to >1,000-fold activation overall (16). Most drugs or xenobiotics that activate AMPK work by inhibiting mitochondrial ATP synthesis and increasing the concentration of AMP and ADP (17). However, a synthetic activator, A-769662 (18), which also causes allosteric activation and inhibits Thr172 dephosphorylation, binds directly to AMPK at distinct site(s) (19-21).Salicylate, but not aspirin, activated AMPK when applied to HEK-293 cells, with its effects being significant at 1 mM and above ( Fig. 1A; it appears that the estera...
Mitochondrial uncoupling protein 1 (UCP1) is enriched within interscapular brown adipose tissue (iBAT) and beige (also known as brite) adipose tissue 1,2 , but its thermogenic potential is reduced with obesity and type 2 diabetes 3-5 for reasons that are not understood. Serotonin (5-hydroxytryptamine, 5-HT) is a highly conserved biogenic amine that resides in non-neuronal and neuronal tissues that are specifically regulated via tryptophan hydroxylase 1 (Tph1) and Tph2, respectively 6-8 . Recent findings suggest that increased peripheral serotonin 9 and polymorphisms in TPH1 are associated with obesity 10 ; however, whether this is directly related to reduced BAT Reprints and permissions information is available online at
Individuals who are obese are frequently insulin resistant, putting them at increased risk of developing type 2 diabetes and its associated adverse health conditions. The accumulation in adipose tissue of macrophages in an inflammatory state is a hallmark of obesity-induced insulin resistance. Here, we reveal a role for AMPK β1 in protecting macrophages from inflammation under high lipid exposure. Genetic deletion of the AMPK β1 subunit in mice (referred to herein as β1 -/-mice) reduced macrophage AMPK activity, acetyl-CoA carboxylase phosphorylation, and mitochondrial content, resulting in reduced rates of fatty acid oxidation. β1 -/-macrophages displayed increased levels of diacylglycerol and markers of inflammation, effects that were reproduced in WT macrophages by inhibiting fatty acid oxidation and, conversely, prevented by pharmacological activation of AMPK β1-containing complexes. The effect of AMPK β1 loss in macrophages was tested in vivo by transplantation of bone marrow from WT or β1 -/-mice into WT recipients. When challenged with a high-fat diet, mice that received β1 -/-bone marrow displayed enhanced adipose tissue macrophage inflammation and liver insulin resistance compared with animals that received WT bone marrow. Thus, activation of AMPK β1 and increasing fatty acid oxidation in macrophages may represent a new therapeutic approach for the treatment of insulin resistance.
OBJECTIVEInsulin resistance associates with chronic inflammation, and participatory elements of the immune system are emerging. We hypothesized that bacterial elements acting on distinct intracellular pattern recognition receptors of the innate immune system, such as bacterial peptidoglycan (PGN) acting on nucleotide oligomerization domain (NOD) proteins, contribute to insulin resistance.RESEARCH DESIGN AND METHODSMetabolic and inflammatory properties were assessed in wild-type (WT) and NOD1/2−/− double knockout mice fed a high-fat diet (HFD) for 16 weeks. Insulin resistance was measured by hyperinsulinemic euglycemic clamps in mice injected with mimetics of meso-diaminopimelic acid–containing PGN or the minimal bioactive PGN motif, which activate NOD1 and NOD2, respectively. Systemic and tissue-specific inflammation was assessed using enzyme-linked immunosorbent assays in NOD ligand–injected mice. Cytokine secretion, glucose uptake, and insulin signaling were assessed in adipocytes and primary hepatocytes exposed to NOD ligands in vitro.RESULTSNOD1/2−/− mice were protected from HFD-induced inflammation, lipid accumulation, and peripheral insulin intolerance. Conversely, direct activation of NOD1 protein caused insulin resistance. NOD1 ligands induced peripheral and hepatic insulin resistance within 6 h in WT, but not NOD1−/−, mice. NOD2 ligands only modestly reduced peripheral glucose disposal. NOD1 ligand elicited minor changes in circulating proinflammatory mediators, yet caused adipose tissue inflammation and insulin resistance of muscle AS160 and liver FOXO1. Ex vivo, NOD1 ligand caused proinflammatory cytokine secretion and impaired insulin-stimulated glucose uptake directly in adipocytes. NOD1 ligand also caused inflammation and insulin resistance directly in primary hepatocytes from WT, but not NOD1−/−, mice.CONCLUSIONSWe identify NOD proteins as innate immune components that are involved in diet-induced inflammation and insulin intolerance. Acute activation of NOD proteins by mimetics of bacterial PGNs causes whole-body insulin resistance, bolstering the concept that innate immune responses to distinctive bacterial cues directly lead to insulin resistance. Hence, NOD1 is a plausible, new link between innate immunity and metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.