The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices ().
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
OBJECTIVE Despite extensive evidence for genetic susceptibility to diabetic nephropathy, the identification of susceptibility genes and their variants has had limited success. To search for genes that contribute to diabetic nephropathy, a genome-wide association scan was implemented on the Genetics of Kidneys in Diabetes collection. RESEARCH DESIGN AND METHODS We genotyped ∼360,000 single nucleotide polymorphisms (SNPs) in 820 case subjects (284 with proteinuria and 536 with end-stage renal disease) and 885 control subjects with type 1 diabetes. Confirmation of implicated SNPs was sought in 1,304 participants of the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, a long-term, prospective investigation of the development of diabetes-associated complications. RESULTS A total of 13 SNPs located in four genomic loci were associated with diabetic nephropathy with P < 1 × 10 −5 . The strongest association was at the FRMD3 (4.1 protein ezrin, radixin, moesin [FERM] domain containing 3) locus (odds ratio [OR] = 1.45, P = 5.0 × 10 −7 ). A strong association was also identified at the CARS (cysteinyl-tRNA synthetase) locus (OR = 1.36, P = 3.1 × 10 −6 ). Associations between both loci and time to onset of diabetic nephropathy were supported in the DCCT/EDIC study (hazard ratio [HR] = 1.33, P = 0.02, and HR = 1.32, P = 0.01, respectively). We demonstratedexpression of both FRMD3 and CARS in human kidney. CONCLUSIONS We identified genetic associations for susceptibility to diabetic nephropathy at two novel candidate loci near the FRMD3 and CARS genes. Their identification implicates previously unsuspected pathways in the pathogenesis of this important late complication of type 1 diabetes.
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ∼2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2×10−8) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0×10−9). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1×10−7), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Background Elevated serum soluble E-selectin levels have been associated with a number of diseases. Although E-selectin levels are heritable, little is known about the specific genetic factors involved. E-selectin levels have been associated with the ABO blood group phenotype. Methods and Results We performed a high-resolution genome-wide association study of serum soluble E-selectin levels in 685 white individuals with type 1 diabetes from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Intervention and Complications (EDIC) study to identify major loci influencing levels. Highly significant evidence for association (P=10−29) was observed for rs579459 near the ABO blood group gene, accounting for 19% of the variance in E-selectin levels. Levels of E-selectin were higher in O/O than O/A heterozygotes, which were likewise higher than A/A genotypes. Analysis of subgroups of A alleles reveals heterogeneity in the association, and even after this was accounted for, an intron 1 SNP remained significantly associated. We replicate the ABO association in nondiabetic individuals. Conclusion ABO is a major locus for serum soluble E-selectin levels. We excluded population stratification, fine-mapped the association to sub-A alleles, and also document association with additional variation in the ABO region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.