The removal of CO 2 from gases is an important industrial process in the transition to a lowcarbon economy. The use of selective physical (co-)solvents is especially perspective in cases when the amount of CO 2 is large as it enables one to lower the energy requirements for solvent regeneration. However, only a few physical solvents have found industrial application and the design of new ones can pave the way to more efficient gas treatment techniques. Experimental screening of gas solubility is a labor-intensive process, and solubility modeling is a viable strategy to reduce the number of solvents subject to experimental measurements. In this paper, a chemoinformatics-based modeling workflow was applied to build a predictive model for the solubility of CO 2 and four other industrially important gases (CO, CH 4 , H 2 , N 2 ). A dataset containing solubilities of gases in 280 solvents was collected from literature sources and supplemented with the new data for six solvents measured in the present study. A modeling workflow based on the usage of several state-of-the-art machine learning algorithms was applied to establish quantitative structure-solubility relationships. The best models were used to perform virtual screening of the industrially produced chemicals. It enabled the identification of compounds with high predicted CO 2 solubility and selectivity towards the other gases. The prediction for one of the compounds − 4-Methylmorpholine was confirmed experimentally. SYNOPSIS STATEMENTDeveloping better solvents for selective CO 2 capture is crucial for reaching net-zero emissions targets.4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.