Dam-related downstream adjustments of riverbeds are normally investigated by analysing the trend in sediment supply and high flow events during the pre-and post-dam periods. The required data for existing predictive models is not measured at river gauges, which limits the application of these tools. We derived the frequency of sediment-transporting streamflow events (T*) and upstream sediment supply (S*) in the pre-and post-dam periods with widely available gauged records and predicted changes in the downstream riverbed by adapting an existing model. Ten gauging stations in the Godavari River Basin, India, located downstream of dams, were chosen as study sites. Annually surveyed cross-sections at each site validated the accuracy of the predicted dam-related downstream changes. Then, a regression equation (R 2 = 0.75) was established between T*/S* (independent variable) and changes in the downstream bed elevation (dependent variable) for the Godavari Basin. We recommended that similar local empirical equations be formulated for larger river basins. Models of large-scale rainfall-runoff and sediment transport processes that can account for the influence of dams, such as the Soil & Water Assessment Tool, can be paired with the proposed regression equation to estimate dam-related downstream erosion and deposition with globally available data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.