We deal with the problem of efficient learning of feedforward neural networks. First, we consider the objective to maximize the ratio of correctly classified points compared to the size of the training set. We show that it is NP-hard to approximate the ratio within some constant relative error if architectures with varying input dimension, one hidden layer, and two hidden neurons are considered where the activation function in the hidden layer is the sigmoid function, and the situation of epsilon-separation is assumed, or the activation function is the semilinear function. For single hidden layer threshold networks with varying input dimension and n hidden neurons, approximation within a relative error depending on n is NP-hard even if restricted to situations where the number of examples is limited with respect to n.Afterwards, we consider the objective to minimize the failure ratio in the presence of misclassification errors. We show that it is NP-hard to approximate the failure ratio within any positive constant for a multilayered threshold network with varying input dimension and a fixed number of neurons in the hidden layer if the thresholds of the neurons in the first hidden layer are zero. Furthermore, even obtaining weak approximations is almost NP-hard in the same situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.