Modern society has easy access to a vast informational database. The pursuit of sustainable green and healthy lifestyle leads to a series of food choices. Therefore, it is of importance to provide reliable, comprehensive and up-to-date information about food content including both nutritional and antinutritional elements. Nutrients are associated with positive effects on human health. Antinutrients, on the other hand, are far less popular for the contemporary man. They are highly bioactive, capable of deleterious effects as well as some beneficial health effects in man, and vastly available in plant-based foods. These compounds are of natural or synthetic origin, interfere with the absorption of nutrients, and can be responsible for some mischievous effects related to the nutrient absorption. Some of the common symptoms exhibited by a large amount of antinutrients in the body can be nausea, bloating, headaches, rashes, nutritional deficiencies, etc. Phytates, oxalates, and lectins are few of the well-known antinutrients. Science has acknowledged several ways in order to alter the negative influence antinutrients exhibiting on human health. Mechanical, thermal and biochemical approaches act synergistically to provide food with lower antinutritional levels. The purpose of this review was to synthesize the availability of antinutrients, clear their effect on the human body, and commemorate possible paths to disable them. This review provides links to the available literature as well as enables a systematic view of the recently published research on the topic of plant-based antinutrients.
Beetroot, the cultivated form of Beta vulgaris subsp. vulgaris, is known for its various bene cial properties but more critical data about its bioactive compounds digestion is needed. In the present research, the bioaccessibility of phytochemicals in freshly prepared red beetroot juice was studied. Changes in total phenolics content, total avonoids content, contents of betacyanins and betaxanthins, phenolic acids pro le as well as the antioxidant activity were monitored before and after simulated gastrointestinal digestion. Several parameters that provide interrelated information about food quality were additionally evaluated, including oxalic acid and individual sugars content, total titratable acidity, and acetylcholinesterase inhibitory activity. Signi cant loss of contents of total phenolics and avonoids measured after digestion resulted in the recovery of 27.07 and 36.4%, respectively. The same negative tendency was observed for betalains bioaccessibility. While nearly 27% of betaxanthins were present after the simulated digestion, almost all betacyanins (96.07%) have been lost. The HPLC analysis of phenolic acids of beetroot juice revealed the presence of chlorogenic, caffeic, p-coumaric, and sinapic acids. After digestion, a 2.5-fold higher concentration of chlorogenic acid was found, however caffeic and p-coumaric acids were no longer detected. The results concerning the antioxidant activity of digested juice were inexplicit. According to the DPPH assay, there was a complete recovery of antioxidant activity, while no activity was detected employing the ABTS assay. Following the cupric ion reducing antioxidant capacity (CUPRAC) and ferric-reducing antioxidant power (FRAP), approximately half of the initial activity was retained. Despite the losses, red beetroot remains a valuable source of biologically active substances. Better understanding of their transformation during digestion is further needed.
Allium ursinum L. is widely used as a spice as well as a traditional medicine. The aim of this work was to evaluate the antioxidant and antimicrobial activities (AMAs) of A. ursinum extract, obtained by pressurised-liquid extraction. Several reliable procedures such as 2,2-diphenyl-1-picrylhydrazyl, 2,2-azinobis-3ethyl benxothiazoline-6-sulphonic acid, ferric-reducing antioxidant power assay and oxygen radical absorbance capacity assays were carried out. Vegetable oil stability was evaluated by using Rancimat test. Moreover, AMA was performed on different microorganisms. On the basis of the results obtained, it is confirmed that the A. ursinum extract could be used as a natural ingredient in food and/or pharmaceutical industries.
Exploring the chemical composition and biological activity of different fruit varieties is essential for the valorization of their health claims. The current study focuses on a detailed comparative analysis of three early- and two mid-ripening peach varieties: “Filina” (peach), “July Lady” (peach), “Laskava” (peach), “Gergana” (nectarine), and “Ufo 4” (flat peach). They were characterized in terms of essential nutrients such as carbohydrates (sugars and dietary fibers), amino acid content, and lipids as well as mineral content, fat-soluble vitamins, carotenoids, and chlorophyll. Polyphenolic compounds and the related antioxidant activity were also assessed. The methanolic extract of the peel seems to be richer in the studied biologically active substances compared to the fleshy part of the fruit. Anthocyanins were most abundant in “Gergana” and “July Lady” extracts (6624.8 ± 404.9 and 7133.6 ± 388.8 µg cyanidin-3-glucoside/100 g fw, resp.). The total phenol content of the samples varied from 34.11 ± 0.54 to 157.97 ± 0.67 mg gallic acid equivalents (GAE)/100 g fw. “Filina” and “July Lady” varieties possessed the highest antioxidant activity. Overall, the results of this study confirm that the studied peach varieties have satisfactory nutritional value and are potential sources of biologically active substances. Each variety represents an individual palette of nutrients that should be considered separately from the other.
Fruits contain a number of useful substances including antioxidants. Their bio-accessibility after passing through the digestive tract is of primary importance when considering their benefits. In this respect, we investigated the effect of in vitro digestion on the phytochemicals of eight fruit juices. Freshly prepared juices from pomegranate, orange and grapefruit were used as well as commercially available juices from cherry, black grapes and aloe vera, blackberry and chokeberry, and two types of chokeberry and raspberries. Spectrophotometric and HPLC methods were used in order to analyse the sugar content, the total phenolic (TPC) and flavonoid contents (TFC), anthocyanins, phenolic acids and antioxidant activity. Principle component analysis was used to explain the differentiation among the types of fruit juice. Sugar recovery variation was between 4%–41%. The bio-accessibility of TPC ranged from 13.52%–26.49% and of flavonoids between 24.25%-67.00%. The pomegranate juice and the juice of black grapes and aloe vera kept 58.12 and 50.36% of their initial anthocyanins content, while for the other samples less than 1.10% was established. As a result, а maximum of 30% remaining antioxidant activity was measured for some of the samples, but for most this was less than 10%. In conclusion, fruit juices are a rich source of biologically active substances, but a more detailed analysis of food transformation during digestion is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.