This work examines Twitter discussion surrounding the 2015 outbreak of Zika, a virus that is most often mild but has been associated with serious birth defects and neurological syndromes. We introduce and analyze a collection of 3.9 million tweets mentioning Zika geolocated to North and South America, where the virus is most prevalent. Using a multilingual topic model, we automatically identify and extract the key topics of discussion across the dataset in English, Spanish, and Portuguese. We examine the variation in Twitter activity across time and location, finding that rises in activity tend to follow to major events, and geographic rates of Zika-related discussion are moderately correlated with Zika incidence ( ρ = .398).
The value-ladenness of computer algorithms is typically framed around issues of epistemic risk. In this paper, I examine a deeper sense of value-ladenness: algorithmic methods are not only themselves value-laden, but also introduce value into how we reason about their domain of application. I call this domain distortion. In particular, using insights from jurisprudence, I show that the use of recidivism risk assessment algorithms (1) presupposes legal formalism and (2) blurs the distinction between liability assessment and sentencing, which distorts how the domain of criminal punishment is conceived and provides a distinctive avenue for values to enter the legal process.
Recidivism risk assessment instruments are presented as an 'evidencebased' strategy for criminal justice reform -a way of increasing consistency in sentencing, replacing cash bail, and reducing mass incarceration. In practice, however, AI-centric reforms can simply add another layer to the sluggish, labyrinthine machinery of bureaucratic systems and are met with internal resistance. Through a community-informed interview-based study of 23 criminal judges and other criminal legal bureaucrats in Pennsylvania, I find that judges overwhelmingly ignore a recently-implemented sentence risk assessment instrument, which they disparage as "useless," "worthless," "boring," "a waste of time," "a non-thing," and simply "not helpful." I argue that this algorithm aversion cannot be accounted for by individuals' distrust of the tools or automation anxieties, per the explanations given by existing scholarship. Rather, the instrument's non-use is the result of an interplay between three organizational factors: county-level norms about presentence investigation reports; alterations made to the instrument by the Pennsylvania Sentencing Commission in response to years of public and internal resistance; and problems with how information is disseminated to judges. These findings shed new light on the important role of organizational influences on professional resistance to algorithms, which helps explain why algorithm-centric reforms can fail to have their desired effect. This study also contributes to an empirically-informed argument against the use of risk assessment instruments: they are resource-intensive and have not demonstrated positive on-the-ground impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.