A recent boom in mucosal-associated invariant T (MAIT) cell research has identified relationships between MAIT cell abundance, function, and clinical outcomes in various malignancies. As they express a variety of immune checkpoint receptors and ligands, and possess strong cytotoxic functions, MAIT cells are an attractive new subject in the field of tumor immunology. MAIT cells are a class of innate-like T cells that express a semi-invariant T cell antigen receptor (TCR) that recognizes microbially derived non-peptide antigens presented by the non-polymorphic MHC class-1 like molecule, MR1. In this review, we outline the current (and often contradictory) evidence exploring MAIT cell biology and how MAIT cells impact clinical outcomes in different human cancers, as well as what role they may have in cancer immunotherapy.
Study Objective Identify small molecule biomarkers of insufficient sleep using untargeted plasma metabolomics in humans undergoing experimental insufficient sleep. Methods We conducted a crossover laboratory study where 16 normal-weight participants (eight men; age 22 ± 5 years; body mass index < 25 kg/m2) completed three baseline days (9 hours sleep opportunity per night) followed by 5-day insufficient (5 hours sleep opportunity per night) and adequate (9 hours sleep opportunity per night) sleep conditions. Energy balanced diets were provided during baseline, with ad libitum energy intake provided during the insufficient and adequate sleep conditions. Untargeted plasma metabolomics analyses were performed using blood samples collected every 4 hours across the final 24 hours of each condition. Biomarker models were developed using logistic regression and linear support vector machine (SVM) algorithms. Results The top-performing biomarker model was developed by linear SVM modeling, consisted of 65 compounds, and discriminated insufficient versus adequate sleep with 74% overall accuracy and a Matthew’s Correlation Coefficient of 0.39. The compounds in the top-performing biomarker model were associated with ATP Binding Cassette Transporters in Lipid Homeostasis, Phospholipid Metabolic Process, Plasma Lipoprotein Remodeling, and sphingolipid metabolism. Conclusion We identified potential metabolomics-based biomarkers of insufficient sleep in humans. Although our current biomarkers require further development and validation using independent cohorts, they have potential to advance our understanding of the negative consequences of insufficient sleep, improve diagnosis of poor sleep health, and could eventually help identify targets for countermeasures designed to mitigate the negative health consequences of insufficient sleep.
Objectives While much of the research concerning factors associated with responses to immune checkpoint inhibitors (ICIs) has focussed on the contributions of conventional peptide‐specific T cells, the role of unconventional T cells, such as mucosal‐associated invariant T (MAIT) cells, in human melanoma remains largely unknown. MAIT cells are an abundant population of innate‐like T cells expressing a semi‐invariant T‐cell receptor restricted to the MHC class I‐like molecule, MR1, presenting vitamin B metabolites derived from bacteria. We sought to characterise MAIT cells in melanoma patients and determined their association with treatment responses and clinical outcomes. Methods In this prospective clinical study, we analysed the frequency and functional profile of circulating and tumor‐infiltrating MAIT cells in human melanoma patients. Using flow cytometry, we compared these across metastatic sites and between ICI responders vs. non‐responders as well as healthy donors. Results We identified tumor‐infiltrating MAIT cells in melanomas across metastatic sites and found that the number of circulating MAIT cells is reduced in melanoma patients compared to healthy donors. However, circulating MAIT cell frequencies are restored by ICI treatment in responding patients, correlating with treatment responses, in which patients with high frequencies of MAIT cells exhibited significantly improved overall survival. Conclusion Our results suggest that MAIT cells may be a potential predictive marker of responses to immunotherapies and provide rationale for testing MAIT cell‐directed therapies in combination with current and next‐generation ICIs.
Background: Adrenal gland metastases (AGMs) are common in advanced-stage melanoma, occurring in up to 50% of patients. The introduction of immune checkpoint inhibitors (ICIs) has markedly altered the outcome of patients with melanoma. However, despite significant successes, anecdotal evidence has suggested that treatment responses in AGMs are significantly lower than in other metastatic sites. We sought to investigate whether having an AGM is associated with altered outcomes and whether ICI responses are dampened in the adrenal glands. Patients and Methods: We retrospectively compared ICI responses and overall survival (OS) in 68 patients with melanoma who were diagnosed with an AGM and a control group of 100 patients without AGMs at a single institution. Response was determined using RECIST 1.1. OS was calculated from time of ICI initiation, anti–PD-1 initiation, initial melanoma diagnosis, and stage IV disease diagnosis. Tumor-infiltrating immune cells were characterized in 9 resected AGMs using immunohistochemical analysis. Results: Response rates of AGMs were significantly lower compared with other metastatic sites in patients with AGMs (16% vs 22%) and compared with those without AGMs (55%). Patients with AGMs also had significantly lower median OS compared with those without AGMs (3.1 years vs not reached, respectively). We further observed that despite this, AGMs exhibited high levels of tumor-infiltrating immune cells. Conclusions: In this cohort of patients with melanoma, those diagnosed with an AGM had lower ICI response rates and OS. These results suggest that tissue-specific microenvironments of AGMs present unique challenges that may require novel, adrenal gland–directed therapies or surgical resection.
Purpose: A phase Ib/II clinical trial was conducted to evaluate the safety and efficacy of the combination of all-trans retinoic acid (ATRA) with pembrolizumab in stage IV melanoma patients. Patients and Methods: Anti-PD-1 naïve stage IV melanoma patients were treated with pembrolizumab plus supplemental ATRA for three days surrounding each of the first four pembrolizumab infusions. The primary objective was to establish the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of the combination. The secondary objectives were to describe the safety and toxicity of the combined treatment and to assess antitumor activity in terms of a) the reduction in circulating myeloid derived suppressor cell (MDSC) frequency and b) progression free survival (PFS). Results: Twenty-four patients were enrolled, 46% diagnosed with M1a and 29% with M1c stage disease at enrollment. All patients had an ECOG status ≤1 and 75% had received no prior therapies. The combination was well tolerated, with the most common ATRA-related adverse events being headache, fatigue, and nausea. The RP2D was established at 150mg/m2ATRA + 200 mg Q3W pembrolizumab. Median PFS was 20.3 months, and the overall response rate was 71%, with 50% of patients experiencing a complete response, and the 1-year overall survival was 80%. The combination effectively lowered the frequency of circulating MDSCs. Conclusions: With a favorable tolerability and high response rate, this combination is a promising frontline treatment strategy for advanced melanoma. Targeting MDSCs remains an attractive mechanism to enhance the efficacy of immunotherapies and this combination merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.