In this paper we provide a survey of recent contributions to robust portfolio strategies from operations research and finance to the theory of portfolio selection. Our survey covers results derived not only in terms of the standard mean-variance objective, but also in terms of two of the most popular risk measures, mean-VaR and mean-CVaR developed recently. In addition, we review optimal estimation methods and Bayesian robust approaches.
Robust optimization, one of the most popular topics in the field of optimization and control since the late 1990s, deals with an optimization problem involving uncertain parameters. In this paper, we consider the relative robust conditional value-at-risk portfolio selection problem where the underlying probability distribution of portfolio return is only known to belong to a certain set. Our approach not only takes into account the worstcase scenarios of the uncertain distribution, but also pays attention to the best possible decision with respect to each realization of the distribution. We also illustrate how to construct a robust portfolio with multiple experts (priors) by solving a sequence of linear programs or a second-order cone program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.