Introduction Studying the pathological changes of ligaments in patients with haemophilic arthritis (HA) has important significance for guiding the release of ligaments during total knee arthroplasty (TKA) and exploring interventions to prevent ligament lesions. Aim This study was conducted to show the pathological changes and investigate the lysine oxidase (LOX) and matrix metalloproteinase (MMP)‐1, ‐2, and ‐3 levels in the ligaments of patients with HA compared with those of patients with osteoarthritis (OA). Methods Ligaments obtained during the TKA were stained with Masson trichrome, Verhoeff‐Van Gieson and haematoxylin and eosin to show the basic pathological changes. Collagen I, elastin, LOXs and MMP‐1, ‐2, and ‐3 expression levels were detected via western blot. LOX and MMP‐1, ‐2, and ‐3 mRNA expression levels were analysed via quantitative real‐time PCR. Results Compared with OA ligaments, HA ligaments were constructed more loosely with wider gaps, more breaks, haemocytodeposition and local hypertrophy among the fibres. LOXs and MMP mRNA expression levels were upregulated in the HA tissues, which was consistent with the western blot results. Collagen I and elastin levels were also higher in patients with HA. Conclusions The metabolism of the ligaments in patients with HA is more complex than in those with OA, and the ligaments of patients with HA have stronger healing and destruction processes. This pathology is related to iron overload and imbalanced inflammatory factors due to repeated intra‐articular bleeding.
The coronavirus disease 2019 pandemic has spread worldwide and caused more than six million deaths globally. Therefore, a timely and accurate diagnosis method is of pivotal importance for controlling the dissemination and expansions. Nucleic acid detection by the reverse transcription-polymerase chain reaction (RT-PCR) method generally requires centralized diagnosis laboratories and skilled operators, significantly restricting its use in rural areas and field settings. The digital microfluidic (DMF) technique provides a better option for simultaneous detections of multiple pathogens with fewer specimens and easy operation. In this study, we developed a novel digital microfluidic RT-qPCR platform for multiple detections of respiratory pathogens. This method can simultaneously detect eleven respiratory pathogens, namely, mycoplasma pneumoniae (MP), chlamydophila pneumoniae (CP), streptococcus pneumoniae (SP), human respiratory syncytial virus A (RSVA), human adenovirus (ADV), human coronavirus (HKU1), human coronavirus 229E (HCoV-229E), human metapneumovirus (HMPV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (FLUA) and influenza B virus (FLUB). The diagnostic performance was evaluated using positive plasmids samples and clinical specimens compared with off-chip individual RT-PCR testing. The results showed that the limit of detections was around 12 to 150 copies per test. The true positive rate, true negative rate, positive predictive value, negative predictive value, and accuracy of DMF on-chip method were 93.33%, 100%, 100%, 99.56%, and 99.85%, respectively, as validated by the off-chip RT-qPCR counterpart. Collectively, this study reported a cost-effective, high sensitivity and specificity on-chip DMF RT-qPCR system for detecting multiple respiratory pathogens, which will greatly contribute to timely and effective clinical management of respiratory infections in medical resource-limited settings.
Introduction Clarifying the links between iron and FGF23, SOX9 expression in chondrocytes would be helpful for comprehending articular cartilage degradation pathogenesis in blood‐induced arthritis and exploring new protective methods. Aim The purpose of this study was to determine iron regulation of fibroblast growth factor 23 (FGF23) and SRY‐box 9 (SOX9) in human chondrocytes, an area which is unexplored in blood‐induced arthritis cartilage degradation pathogenesis. Methods Expression of FGF23, SOX9, MMP13 and collagen Ⅱ in articular cartilage of patients with osteoarthritis (OA) or haemophilic arthritis (HA) was determined by western blot (WB). Iron‐induced FGF23 and SOX9 mRNA and protein expression in primary human normal chondrocyte cells (HUM‐iCell‐s018) was quantified by qRT‐PCR and WB, respectively. Results We found that compared with OA patients, the expression of FGF23, MMP13 in articular cartilage of patients with HA was up‐regulated, while the expression of SOX9, collagen Ⅱ was down‐regulated. Iron‐induced FGF23 and suppressed SOX9 expression in chondrocytes in a dose‐dependent manner. Conclusions These findings demonstrated that iron was involved in hemophilic cartilage lesion directly via changing cartilage phenotype through regulation of FGF23 and SOX9 expression in chondrocytes.
Background Abnormal epiphyseal growth plate development of the proximal tibia in hemophilia patients leads to notable morphological changes in the mature knee joint. This study aimed to compare the morphological characteristics of tibial component placement cut surface in patients with hemophilic arthritis (HA) and osteoarthritis (OA) and to determine the tibial component rotational alignment axis’ best position for HA patients. Methods Preoperative computed tomography scans of 40 OA and 40 HA patients who underwent total knee arthroplasty were evaluated using a three-dimensional (3D) software. The tibial component’s placement morphological parameters were measured. The tibial component’s rotational mismatch angles were evaluated, and the most appropriate 0°AP axis position for HA patients was investigated. Results In the two groups, the morphology was significantly different in some of the parameters (p < 0.05). The tibial component rotational mismatch angles were significantly different between both groups (p < 0.05). The medial 9.26° of the medial 1/3 of the patellar tendon was the point through which 0°AP axis passed for the HA patients. Similarly, the medial 13.02° of the medial 1/3 of the tibial tubercle was also the point through which the 0°AP axis passed. Conclusions The ratio of the anteroposterior length to the geometric transverse length of the placement section of the tibial component in HA patients was smaller than that in OA patients. The medial 9.26° of the medial 1/3 of the patellar tendon or the medial 13.02° of the medial 1/3 of the tibial tubercle seem to be an ideal reference position of the rotational alignment axis of the tibial component for HA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.