Sonodynamic therapy (SDT) is a noninvasive ultrasound-triggered therapeutic strategy for site-specific treatment of tumors with great depth penetration. The design of nano-sonosensitizers suitable for SDT treatment of bladder cancer (BCa) post-intravesical instillation has not yet been reported. Herein, a transmucosal oxygen-self-production SDT nanoplatform is developed to achieve highly efficient SDT against BCa. In this system, fluorinated chitosan (FCS) is synthesized as a highly effective nontoxic transmucosal delivery carrier to assemble with meso-tetra(4-carboxyphenyl)porphineconjugated catalase (CAT-TCPP). The formed CAT-TCPP/ FCS nanoparticles after intravesical instillation into the bladder cavity exhibit excellent transmucosal and intratumoral penetration capacities and could efficiently relieve hypoxia in tumor tissues by the catalase-catalyzed O 2 generation from tumor endogenous H 2 O 2 to further improve the therapeutic efficacy of SDT to ablate orthotopic bladder tumors under ultrasound. Our work presents a nano-sonosensitizer formulation with FCS to enhance transmucosal delivery and intratumoral diffusion and CAT to improve tumor oxygenation, promising for instillation-based SDT to treat bladder tumors without the concern of systemic toxicity.
Photodynamic therapy (PDT) by insertion of an optical fiber into the bladder cavity has been applied in the clinic for noninvasive treatment of bladder tumors. To avoid systemic phototoxicity, bladder intravesical instillation of a photosensitizer may be an ideal approach for PDT treatment of bladder cancer, in comparison to conventional intravenous injection. However, the instillationbased PDT for bladder cancer treatment remains to be less effective due to the poor urothelial uptake of photosensitizer, as well as the tumor hypoxiaassociated PDT resistance. Herein, it is uncovered that fluorinated polyethylenimine (F-PEI) achieved by mixing with Chorin-e6-conjugated catalase (CAT-Ce6) is able to form self-assembled CAT-Ce6/F-PEI nanoparticles, which show greatly improved cross-membrane, transmucosal, and intratumoral penetration capacities compared with CAT-Ce6 alone or nonfluorinated CAT-Ce6/PEI nanoparticles. Owing to the decomposition of tumor endogenous H 2 O 2 by CAT-Ce6/F-PEI nanoparticles penetrating into bladder tumors, the tumor hypoxia would be effectively relieved to further favor PDT. Therefore, bladder intravesical instillation with CAT-Ce6/F-PEI nanoparticles could offer remarkably improved photodynamic therapeutic effect to destruct orthotopic bladder tumors with reduced systemic toxicity compared to hematoporphyrin, the first-line photosensitizer used for bladder cancer PDT in clinic. This work presents a unique photosensitizer nanomedicine formulation, promising for clinical translation in instillation-based PDT to treat bladder tumors.
Surgical intervention combined with intravesical instillation of chemotherapeutics to clear residual cancer cells after operation is the current standard treatment method for bladder cancer. However, the poor bioavailability of active pharmaceutical ingredients for bladder cancer cells on account of the biological barriers of bladder mucosa, together with significant side effects of currently used intravesical medicine, have limited the clinical outcomes of localized adjuvant therapy for bladder cancer. Aiming at improved intravesical instillation therapy of bladder cancer, a fluorinated polyethylenimine (F‐PEI) is employed here for the transmucosal delivery of an active venom peptide, polybia‐mastoparan I (MPI), which shows selective antiproliferative effect against various bladder cancer cell lines. Upon simple mixing, MPI and F‐PET would coassemble to form stable nanoparticles, which show greatly improved cross‐membrane and transmucosal penetration capacities compared with MPI alone or nonfluorinated MPI/PEI nanoparticles. MPI/F‐PEI shows higher in vivo tumor growth inhibition efficacy for local treatment of a subcutaneous tumor model. More excitingly, as further demonstrated in an orthotopic bladder cancer model, MPI/F‐PEI offers remarkably improved therapeutic effects compared to those achieved by free MPI or the first‐line bladder cancer drug mitomycin C. This work presents a new transmucosal delivery carrier particularly promising for intravesical instillation therapy of bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.