In this paper, we investigated the dilution enthalpies of the droplets in water/AOT/oil microemulsions with oil being isooctane, decane, or cyclohexane by isothermal titration microcalorimetry (ITC). Combining with the results obtained from the study of the water/AOT/toluene system in our previous work, it was found that the enthalpy interactions between droplets for isooctane and decane systems were repulsive, while the enthalpy interactions were attractive for cyclohexane and toluene systems. The repulsive droplet interaction for the isooctane system was also confirmed by static light scattering. The solvents appear to play important roles in varying the droplet enthalpy interactions from positive to negative, and the entropy contribution seems to be dominant for the stability of these microemulsion droplet systems.
The kinetics of the alkaline hydrolysis of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in water/AOT/isooctane microemulsions has been studied by monitoring the absorbance change of the phenolphthalein in the system with time. The apparent first-order rate constant k(obs) has been obtained and found to be dependent on both the molar ratio of water to AOT ω and the temperature. The dependences of k(obs) on ω have been analyzed by a pseudophase model which gives the true rate constants k(i) of the AOT-hydrolysis reaction on the interface and the partition coefficients K(wi) for the distribution of OH(-) between aqueous and interface pseudophases at various temperatures; the latter is almost independent of the temperature and ω. The temperature dependences of the reaction rate constants k(obs) and k(i) have been analyzed to obtain enthalpy ΔH(≠), entropy ΔS(≠), and energy E(a) of activation, which indicate that the distribution of OH(-) between aqueous and interface pseudophases increases ΔS(≠) but makes no contribution to E(a) and ΔH(≠). The influence of the overall concentration of AOT in the system on the rate constant has been examined and found to be negligible. It contradicts with what was reported by García-Río et al. (1) but confirms that the first-order reaction of the AOT-hydrolysis takes place on the surfactant interface. The study of the influence of AOT-hydrolysis on the kinetics of the alkaline fading of crystal violet or phenolphthalein in the water/AOT/isooctane microemulsions suggests that corrections for the AOT-hydrolysis in these reactions are required.
The interactions between the anionic polymer ι-carrageenan (IC) and the cationic surfactants 1-dodecyl-3-methylimidazolium bromide (C12mimBr), dodecyltrimethylammonium bromide (DTAB) and ethyl-α,ω-bis(dodecyldimethylammonium)dibromide (12-2-12) have been studied by fluorimetry and isothermal titration calorimetry. Our experimental results showed that at a low surfactant concentration, the monomers adsorbed on the IC chains through the electrostatic attraction, followed by the formation of induced micelles on the IC chains through the hydrophobic interaction until the IC chains are saturated by surfactant molecules; after that the added surfactant formed free micelles in the solution. A pseudo-phase-equilibrium thermodynamic model was proposed to explain the experimental results and to understand the mechanisms of the interactions in these three systems. Moreover, the salt effect on the interactions was investigated and found that it changed the critical concentrations but not the interaction mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.