In the field of fluorescence microscopy, there is continued demand for dynamic technologies that can exploit the complete information from every pixel of an image. One imaging technique with proven ability for yielding additional information from fluorescence imaging is Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM allows for the measurement of how long a fluorophore stays in an excited energy state, and this measurement is affected by changes in its chemical microenvironment, such as proximity to other fluorophores, pH, and hydrophobic regions. This ability to provide information about the microenvironment has made FLIM a powerful tool for cellular imaging studies ranging from metabolic measurement to measuring distances between proteins. The increased use of FLIM has necessitated the development of computational tools for integrating FLIM analysis with image and data processing. To address this need, we have created FLIMJ, an ImageJ plugin and toolkit that allows for easy use and development of extensible image analysis workflows with FLIM data. Built on the FLIMLib decay curve fitting library and the ImageJ Ops framework, FLIMJ offers FLIM fitting routines with seamless integration with many other ImageJ components, and the ability to be extended to create complex FLIM analysis workflows. Building on ImageJ Ops also enables FLIMJ’s routines to be used with Jupyter notebooks and integrate naturally with science-friendly programming in, e.g., Python and Groovy. We show the extensibility of FLIMJ in two analysis scenarios: lifetime-based image segmentation and image colocalization. We also validate the fitting routines by comparing them against industry FLIM analysis standards.
In the field of fluorescence microscopy, there is continued demand for dynamic technologies that can exploit the complete information from every pixel of an image. One imaging technique with proven ability for yielding additional information from fluorescence imaging is Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM allows for the measurement of how long a fluorophore stays in an excited state and is affected by changes in its chemical microenvironment such as proximity to other fluorophores, pH, and hydrophobic regions. This ability to provide information about the microenvironment has made FLIM a powerful tool for cellular imaging studies ranging from metabolic measurement to measuring distances between proteins. The increased use of FLIM has necessitated the development of computational tools for integrating FLIM analysis with image and data processing. To address this need, we have created FLIMJ, an ImageJ plugin and toolkit that allows for easy use and development of extensible image analysis workflows with FLIM data. Built on the FLIMLib decay curve fitting library and the ImageJ Ops framework, FLIMJ offers FLIM fitting routines with seamless integration with other ImageJ components, and the ability to be extended to create complex FLIM analysis workflows. Building on ImageJ Ops also enables FLIMJ’s routines to be used with Jupyter notebooks and integrate naturally with science-friendly programming in e.g. Python and Groovy. We show the extensibility of FLIMJ in two analysis scenarios, lifetime-based segmentation and image colocalization, and validate the fitting routines by comparing against industry FLIM analysis standards.
ImageJ provides a framework for image processing across scientific domains while being fully open source. Over the years ImageJ has been substantially extended to support novel applications in scientific imaging as they emerge, particularly in the area of biological microscopy, with functionality made more accessible via the Fiji distribution of ImageJ. Within this software ecosystem, work has been done to extend the accessibility of ImageJ to utilize scripting, macros, and plugins in a variety of programming scenarios, e.g., from Groovy and Python and in Jupyter notebooks and cloud computing. We provide five protocols that demonstrate the extensibility of ImageJ for various workflows in image processing. We focus first on Fluorescence Lifetime Imaging Microscopy (FLIM) data, since this requires significant processing to provide quantitative insights into the microenvironments of cells. Second, we show how ImageJ can now be utilized for common image processing techniques, specifically image deconvolution and inversion, while highlighting the new, built‐in features of ImageJ—particularly its capacity to run completely headless and the Ops matching feature that selects the optimal algorithm for a given function and data input, thereby enabling processing speedup. Collectively, these protocols can be used as a basis for automating biological image processing workflows. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Using PyImageJ for FLIM data processing Alternate Protocol: Groovy FLIMJ in Jupyter Notebooks Basic Protocol 2: Using ImageJ Ops for image deconvolution Support Protocol 1: Using ImageJ Ops matching feature for image inversion Support Protocol 2: Headless ImageJ deconvolution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.