Background Although mobile health (mHealth) technologies have shown promise in improving clinical care in resource-limited settings (RLS), they are infrequently brought to scale. One limitation to the success of many mHealth interventions is inattention to end-user acceptability, which is an important predictor of technology adoption. Methods We conducted in-depth interviews with 43 people living with HIV in rural Uganda who had participated in a clinical trial of a short messaging system (SMS)-based intervention designed to prompt return to clinic after an abnormal laboratory test. Interviews focused on established features of technology acceptance models, including perceived ease of use and perceived usefulness, and included open-ended questions to gain insight into unexplored issues related to the intervention’s acceptability. We used conventional (inductive) and direct content analysis to derive categories describing use behaviors and acceptability. Results Interviews guided development of a proposed conceptual framework, the technology acceptance model for resource-limited settings (TAM-RLS). This framework incorporates both classic technology acceptance model categories as well as novel factors affecting use in this setting. Participants described how SMS message language, phone characteristics, and experience with similar technologies contributed to the system’s ease of use. Perceived usefulness was shaped by the perception that the system led to augmented HIV care services and improved access to social support from family and colleagues. Emergent themes specifically related to mHealth acceptance among PLWH in Uganda included 1) the importance of confidentiality, disclosure, and stigma, and 2) the barriers and facilitators downstream from the intervention that impacted achievement of the system’s target outcome. Conclusion The TAM-RLS is a proposed model of mHealth technology acceptance based upon end-user experiences in rural Uganda. Although the proposed model requires validation, the TAM-RLS may serve as a useful tool to guide design and implementation of mHealth interventions.
BackgroundDespite investments in infrastructure and evidence for high acceptability, few mHealth interventions have been implemented in sub-Saharan Africa.ObjectiveWe sought to (1) identify predictors of uptake of an mHealth application for a low-literacy population of people living with HIV (PLWH) in rural Uganda and (2) evaluate the efficacy of various short message service (SMS) text message formats to optimize the balance between confidentiality and accessibility.MethodsThe trial evaluated the efficacy of a SMS text messaging app to notify PLWH of their laboratory results and request return to care for those with abnormal test results. Participants with a normal laboratory result received a single SMS text message indicating results were normal. Participants with an abnormal test result were randomized to 1 of 3 message formats designed to evaluate trade-offs between clarity and privacy: (1) an SMS text message that stated results were abnormal and requested return to clinic (“direct”), (2) the same message protected by a 4-digit PIN code (“PIN”), and (3) the message “ABCDEFG” explained at enrollment to indicate abnormal results (“coded”). Outcomes of interest were (1) self-reported receipt of the SMS text message, (2) accurate identification of the message, and (3) return to care within 7 days (for abnormal results) or on the date of the scheduled appointment (for normal results). We fit regression models for each outcome with the following explanatory variables: sociodemographic characteristics, CD4 count result, ability to read a complete sentence, ability to access a test message on enrollment, and format of SMS text message.ResultsSeventy-two percent (234/385) of participants successfully receiving a message, 87.6% (219/250) correctly identified the message format, and 60.8% (234/385) returned to clinic at the requested time. Among participants with abnormal tests results (138/385, 35.8%), the strongest predictors of reported message receipt were the ability to read a complete sentence and a demonstrated ability to access a test message on enrollment. Participants with an abnormal result who could read a complete sentence were also more likely to accurately identify the message format (AOR 4.54, 95% CI 1.42-14.47, P=.01) and return to clinic appropriately (AOR 3.81, 95% CI 1.61-9.03, P=.002). Those who were sent a PIN-protected message were less likely to identify the message (AOR 0.11, 95% CI 0.03-0.44, P=.002) or return within 7 days (AOR 0.26, 95% CI 0.10-0.66, P=.005). Gender, age, and socioeconomic characteristics did not predict any outcomes and there were no differences in outcomes between those receiving direct or coded messages.ConclusionsConfirmed literacy at the time of enrollment was a robust predictor of SMS text message receipt, identification, and appropriate response for PLWH in rural Uganda. PIN-protected messages reduced odds of clinic return, but coded messages were as effective as direct messages and might augment privacy.Trial RegistrationClinicaltrials.gov NCT 01579214; https://clin...
BackgroundHealthcare-focused hackathons are 48-hour platforms intended to accelerate novel medical technology. However, debate exists about how much they contribute to medical technology innovation. The Consortium for Affordable Medical Technologies (CAMTech) has developed a three-pronged model to maximise their effectiveness. To gauge the success of this model, we examined follow-up outcomes.MethodsOutcomes of 12 hackathons from 2012 to 2015 in India, Uganda and the USA were measured using emailed surveys. To minimise response bias, non-responding teams were coded as having made no progress.Results331 individuals provided information on 196 of 356 projects (55.1% response rate), with no difference in responses from teams participating in different countries (Cramer's V=0.09, p=0.17). 30.3% of projects had made progress after a mean of 12.2 months. 88 (24.7%) teams had initiated pilot testing, with 42 (11.8%) piloting with care providers and 24 (6.7%) with patients. Overall, 97 teams (8.1 per hackathon) drafted business plans, 22 (1.8 per hackathon) had filed patents on their innovations and 15 (1.3 per hackathon) had formed new companies. Teams raised US$64.08 million in funding (average US$5.34 million per hackathon; median award size of $1800). In addition, 108 teams (30.3%) reported at least one member working on additional technologies with people they met at a hackathon. Individual confidence to address medical technology challenges was significantly increased after attending (t(1282)=192.77, p 0.001).ConclusionCAMTech healthcare hackathons lead to consistent output with respect to medical technology innovation, including clinical trials, business plan development, securing investment capital/funding and new company formation.
BackgroundUp to 50 % of HIV-infected persons in sub-Saharan Africa are lost from care between HIV diagnosis and antiretroviral therapy (ART) initiation. Structural barriers, including cost of transportation to clinic and poor communication systems, are major contributors.MethodsWe conducted a prospective, pragmatic, before-and-after clinical trial to evaluate a combination mobile health and transportation reimbursement intervention to improve care at a publicly operated HIV clinic in Uganda. Patients undergoing CD4 count testing were enrolled, and clinicians selected a result threshold that would prompt early return for ART initiation or further care. Participants enrolled in the pre-intervention period (January – August 2012) served as a control group. Participants in the intervention period (September 2012 – November 2013) were randomized to receive daily short message service (SMS) messages for up to seven days in one of three formats: 1) messages reporting an abnormal result directly, 2) personal identification number-protected messages reporting an abnormal result, or 3) messages reading “ABCDEFG” to confidentially convey an abnormal result. Participants returning within seven days of their first message received transportation reimbursements (about $6USD). Our primary outcomes of interest were time to return to clinic and time to ART initiation.ResultsThere were 45 participants in the pre-intervention period and 138 participants in the intervention period (46, 49, and 43 in the direct, PIN, and coded groups, respectively) with low CD4 count results. Median time to clinic return was 33 days (IQR 11–49) in the pre-intervention period and 6 days (IQR 3–16) in the intervention period (P < 0.001); and median time to ART initiation was 47 days (IQR 11–75) versus 12 days (IQR 5–19), (P < 0.001). In multivariable models, participants in the intervention period had earlier return to clinic (AHR 2.32, 95 %CI 1.53 to 3.51) and earlier time to ART initiation (AHR 2.27, 95 %CI 1.38 to 3.72). All three randomized message formats improved time to return to clinic and time to ART initiation (P < 0.01 for all comparisons versus the pre-intervention period).ConclusionsA combination of an SMS laboratory result communication system and transportation reimbursements significantly decreased time to clinic return and time to ART initiation after abnormal CD4 test results.Trial registrationsClinicaltrials.gov NCT01579214, approved 13 April 2012.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-015-0397-1) contains supplementary material, which is available to authorized users.
Medical technology offers enormous potential for scalable medicine-to improve the quality and access in health care while simultaneously reducing cost. However, current medical device innovation within companies often only offers incremental advances on existing products, or originates from engineers with limited knowledge of the clinical complexities. We describe how the Hacking Medicine Initiative, based at Massachusetts Institute of Technology has developed an innovative "healthcare hackathon" approach, bringing diverse teams together to rapidly validate clinical needs and develop solutions. Hackathons are based on three core principles; emphasis on a problem-based approach, cross-pollination of disciplines, and "pivoting" on or rapidly iterating on ideas. Hackathons also offer enormous potential for innovation in global health by focusing on local needs and resources as well as addressing feasibility and cultural contextualization. Although relatively new, the success of this approach is clear, as evidenced by the development of successful startup companies, pioneering product design, and the incorporation of creative people from outside traditional life science backgrounds who are working with clinicians and other scientists to create transformative innovation in health care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.