Ultrathin MnO 2 /graphene oxide/carbon nanotube (G/M@CNT) interlayers are developed as efficient polysulfide-trapping shields for high-performance Li-S batteries. A simple layer-by-layer procedure is used to construct a sandwiched vein-membrane interlayer of thickness 2 µm and areal density 0.104 mg cm −2 by loading MnO 2 nanoparticles and graphene oxide (GO) sheets on superaligned carbon nanotube films. The G/M@CNT interlayer provides a physical shield against both polysulfide shuttling and chemical adsorption of polysulfides by MnO 2 nanoparticles and GO sheets. The synergetic effect of the G/M@CNT interlayer enables the production of Li-S cells with high sulfur loadings (60-80 wt%), a low capacity decay rate (−0.029% per cycle over 2500 cycles at 1 C), high rate performance (747 mA h g −1 at a charge rate of 10 C), and a low self-discharge rate with high capacity retention (93.0% after 20 d rest). Electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy observations of the Li anodes after cycling confirm the polysulfide-trapping ability of the G/M@CNT interlayer and show its potential in developing high-performance Li-S batteries.
Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.
Deer antlers are extraordinary mammalian organs that can fully regenerate annually. Antler renewal is a stem cell-based epimorphic process and antler stem (AS) cells can initiate de novo generation of antlers in postnatal mammals. However, although being called stem cells, the AS cells have not been characterized at molecular level based on the stem cell criteria. Comprehensive characterization of the AS cells would undoubtedly help to decipher the mechanism underlying the full regeneration of deer antlers, the only case of stem cell-based epimorphic regeneration in mammals. In the present study, three types of AS cells (antlerogenic periosteal cells APCs, for initial pedicle and first antler formation; pedicle periosteal cells PPC, for annual antler regeneration; and reserve mesenchyme cells RMCs, for rapid antler growth), were isolated for comprehensive molecular characterization. A horn-growth-related gene, RXFP2, was found to be expressed only in AS cells lineages but not in the facial periosteal cells (FPCs, locates geographically in the vicinity of the APCs or PPCs), suggesting the RXFP2 might be a specific marker for the AS cell lineage in deer. Our results demonstrated that AS cells expressed classic MSC markers including surface markers CD73, CD90, CD105 and Stro-1. They also expressed some of the markers including Tert, Nestin, S100A4, nucleostemin and C-Myc, suggesting that they have some attributes of the ESCs. Microinjection of male APC into deer blastocysts resulted in one female foetus (110 days gestation) recovered with obvious pedicle primordia with both male and female genotype detected in the ovary. In conclusion, the AS cells should be defined as MSCs but with partial attributes of ESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.