Recent literature has introduced (a) the network perspective to psychology and
(b) collection of time series data to capture symptom fluctuations and other
time varying factors in daily life. Combining these trends allows for the
estimation of intraindividual network structures. We argue that these networks
can be directly applied in clinical research and practice as hypothesis
generating structures. Two networks can be computed: a temporal
network, in which one investigates if symptoms (or other relevant
variables) predict one another over time, and a contemporaneous
network, in which one investigates if symptoms predict one another
in the same window of measurement. The contemporaneous network is a partial
correlation network, which is emerging in the analysis of cross-sectional data
but is not yet utilized in the analysis of time series data. We explain the
importance of partial correlation networks and exemplify the network structures
on time series data of a psychiatric patient.
Recent literature has introduced (1) the network perspective to psychology, and (2) collection of time-series data in order to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intra-individual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time-series data. We explain the importance of partial correlation networks and exemplify the network structures on time-series data of a psychiatric patient.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Background: The past decades of research have seen an increase in statistical tools to explore the complex dynamics of mental health from patient data, yet the application of these tools in clinical practice remains uncommon. This is surprising, given that clinical reasoning, e.g., case conceptualizations, largely coincides with the dynamical system approach. We argue that the gap between statistical tools and clinical practice can partly be explained by the fact that current estimation techniques disregard theoretical and practical considerations relevant to psychotherapy. To address this issue, we propose that case conceptualizations should be formalized. We illustrate this approach by introducing a computational model of functional analysis, a framework commonly used by practitioners to formulate case conceptualizations and design patient-tailored treatment. Methods: We outline the general approach of formalizing idiographic theories, drawing on the example of a functional analysis for a patient suffering from panic disorder. We specified the system using a series of differential equations and simulated different scenarios; first, we simulated data without intervening in the system to examine the effects of avoidant coping on the development of panic symptomatic. Second, we formalized two interventions commonly used in cognitive behavioral therapy (CBT; exposure and cognitive reappraisal) and subsequently simulated their effects on the system. Results: The first simulation showed that the specified system could recover several aspects of the phenomenon (panic disorder), however, also showed some incongruency with the nature of panic attacks (e.g., rapid decreases were not observed). The second simulation study illustrated differential effects of CBT interventions for this patient. All tested interventions could decrease panic levels in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.