Intravesical drug administration is used to deliver chemotherapeutic agents via a catheter to treat bladder cancer. The major limitation of this treatment is poor retention of the drug in the bladder due to periodic urine voiding. In this work, maleimide-functionalised PEGylated liposomes (PEG-Mal) were explored as mucoadhesive vehicles for drug delivery to the urinary bladder. The retention of these liposomes on freshly excised porcine bladder mucosa in vitro was compared with conventional liposomes, PEGylated liposomes, two controls (dextran and chitosan), and evaluated through Wash Out (WO) values. PEG-Mal liposomes exhibited greater retention on mucosal surfaces compared to other liposomes. The penetration abilities of conventional, PEG-Mal-functionalised and PEGylated liposomal dispersions with encapsulated fluorescein sodium into the bladder mucosa ex vivo were assessed using a fluorescence microscopy technique. PEGylated liposomes were found to be more mucosa-penetrating compared to other liposomes. All liposomes were loaded with fluorescein sodium salt as a model drug and the in vitro release kinetics was evaluated. Longer drug release was observed from PEG-Mal liposomes.
Polyvinyl alcohol (PVA) was blended with starch (S) in presence of glacial acetic acid as crosslinking agent. The effect of blend ratio and molecular weight of PVA on the physical, thermal and mechanical properties of PVA/S blends were investigated using various techniques such as DSC, TGA, SEM, tensile strength, and solubility tests. Furthermore, biodegradability of the blend films was also studied. In addition, FTIR spectroscopy was used to check the hydrogen bonding interaction between PVA and S in the blends. The obtained results showed that the physico-mechanical properties are strongly dependent on the molecular weight and PVA content in PVA/S blends. DSC and SEM analyses of PVA/S blend showed a single glass transition temperature indicating the formation of completely miscible blends with a single phase due to the formation of hydrogen bonds between the hydroxyl groups of PVA and starch. In addition, PVA/S blend films exhibited good mechanical properties, thermal stability as compared with the pure PVA. More interestingly, the results showed enhancement in biodegradability of PVA/S blend films and particularly in moist soil, which can be exploited for manufacturing of biodegradable and environmentally friendly packaging materials at low cost.
Low permeability of the urinary bladder epithelium, poor retention of the chemotherapeutic agents due to dilution and periodic urine voiding as well as intermittent catheterisations are the major limitations of intravesical drug delivery used in the treatment of bladder cancer. In this work, maleimide-functionalised poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-PEG-Mal) nanoparticles were developed. Their physicochemical characteristics, including morphology, architecture and molecular parameters have been investigated by means of dynamic light scattering, transmission electron microscopy and small-angle neutron scattering techniques. It was established that the size of nanoparticles was dependent on the solvent used in their preparation and molecular weight of PEG, for example, 105 ± 1 nm and 68 ± 1 nm particles were formed from PLGA20K-PEG5K in dimethyl sulfoxide and acetone, respectively. PLGA-PEG-Mal nanoparticles were explored as mucoadhesive formulations for drug delivery to the urinary bladder. The retention of fluorescein-loaded nanoparticles on freshly excised lamb bladder mucosa in vitro was evaluated and assessed using a flow-through fluorescence technique and Wash Out50 (WO50) quantitative method. PLGA-PEG-Mal nanoparticles (NPs) exhibited greater retention on urinary bladder mucosa (WO50 = 15 mL) compared to maleimide-free NPs (WO50 = 5 mL). The assessment of the biocompatibility of PEG-Mal using the slug mucosal irritation test revealed that these materials are non-irritant to mucosal surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.