We present and discuss parameters of a high dynamic range (HDR) image sensor with LED flicker mitigation (LFM) operating in automotive temperature range. The total SNR (SNR including dark fixed pattern noise), of the sensor is degraded by floating diffusion (FD) dark current (DC) and dark signal non-uniformity (DSNU). We present results of FD DC and DSNU reduction, to provide required SNR versus signal level at temperatures up to 120 °C. Additionally we discuss temperature dependencies of quantum efficiency (QE), sensitivity, color effects, and other pixel parameters for backside illuminated image sensors. Comparing +120 °C junction vs. room temperature, in visual range we measured a few relative percent increase, while in 940 nm band range we measured 1.46x increase in sensitivity. Measured change of sensitivity for visual bands—such as blue, green, and red colors—reflected some impact to captured image color accuracy that created slight image color tint at high temperature. The tint is, however, hard to detect visually and may be removed by auto white balancing and temperature adjusted color correction matrixes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.