Abstract. Plant species, and the traits associated with them, can help buffer ecosystems to environmental perturbations. Few studies have examined whether within species variation, both among and within populations, can similarly buffer ecosystems to environmental perturbations, such as climatic warming, across levels of organization. Using a dominant plant species in the eastern US, Solidago altissima, we examined whether genotypes of the same species from both southern and northern latitude populations exhibited differential short-term responses to temperature at the cell, leaf, and plant level. At the cell level we quantified the production of reactive oxygen species (by-product of temperature stress) and total oxygen radical antioxidant capacity (which ameliorates temperature stress by-products). At the leaf and plant levels, we measured CO 2 assimilation. Increasing temperatures had strong negative impacts on plantlevel carbon gain, but weak impacts on cell-level antioxidant capacity. Southern latitude genotypes had greater total antioxidant capacity, but lower leaf-level carbon gain, than did northern genotypes under elevated temperature. At the plant level, northern and southern genotypes exhibited similar declines in carbon gain under elevated temperature, likely because total plant leaf area was higher for southern genotypes than northern genotypes, which compensated for their lower per unit area leaf-level carbon gain. Overall, short-term temperature-induced declines in carbon gain at the plant level may scale to reduce within species variation, both across and within populations, potentially altering ecosystem carbon cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.