BackgroundComplex networks are found in many domains and the control of these networks is a research topic that continues to draw increasing attention. This paper proposes a method of network control that attempts to maintain a specified target distribution of the network state. In contrast to many existing network control research works, which focus exclusively on structural analysis of the network, this paper also accounts for user actions/behaviours within the network control problem.MethodsThis paper proposes and makes use of a novel distribution-based control method. The control approach is applied within a simulation of the real-valued voter model, which could have applications in problems such as the avoidance of consensus or extremism. The network control problem under consideration is investigated using various theoretical network types, including scale free, random, and small world.ResultsIt is argued that a distribution-based control approach may be more appropriate for several types of social control problems, in which the exact state of the system is of less interest than the overall system behaviour. The preliminary results presented in this paper demonstrate that a standard reinforcement learning approach is capable of learning a control signal selection policy to prevent the network state distribution from straying far from a specified target distribution.ConclusionsIn summary, the results presented in this paper demonstrate the feasibility of a distribution-based control solution within the simulated problem. Additionally, several interesting questions arise from these results and are discussed as potential future work.
This paper investigates the speed improvements available when using a graphics processing unit (GPU) for evaluation of individuals in a genetic programming (GP) environment. An existing GP system is modified to enable parallel evaluation of individuals on a GPU device. Several issues related to implementing GP on GPU are discussed, including how to perform tree-based GP on a device without recursion support, as well as the effect that proper memory layout can have on speed increases when using CUDA-enabled nVidia GPU devices. The specific GP implementation is designed to evolve stock trading strategies using technical analysis indicators. The second goal of this research is to investigate the possible improvement in performance when training individuals on a larger number of stocks and training days. This increased training size (nearly 100,000 training points) is enabled due to the speedups realized by GPU evaluation. Several different scenarios were used to test various speed optimizations of GP evaluation on the GPU device, with a peak speedup factor of over 600 (when compared to sequential evaluation on a 2.4 GHz CPU). Also, it is found that increasing the number of stocks and the length of the training period can result in higher out-of-training testing profitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.