We recently demonstrated the synthesis and fluorescence activity associated with an optical detector incorporating a molecular imprinted polymer (MIP). Steady-state and time-resolved (lifetime) fluorescence measurements were used to characterize the binding activity associated with MIP microparticles imprinted to dipicolinic acid (DPA). DPA is a unique biomarker associated with the sporulation phase of endospore-forming bacteria. Vinylic monomers were polymerized in a dimethylformamide solution containing DPA as a template. The resulting MIP was then pulverized and sorted into small microscale particles. Tests were conducted on replicate samples of biologically active cultures representing both vegetative stationary phase and sporulation phase of Bacillus subtilis in standard media. Samplers were adapted incorporating the MIP particles within a dialyzer cartridge (500 MW). The permeability of the dialyzer membrane permitted diffusion of lighter molecular weight constituents from microbial media effluents to enter the dialyzer chamber and come in contact with the MIP. Results showed dramatic (10-fold over background) steady-state fluorescence changes (as a function of excitation, emission and intensity) for samples associated with high endospore biomass (DPA), and a frequency-domain lifetime of 5.3 ns for the MIP-DPA complex.
The US military is interested in replacing TNT (2,4,6-trinitrotoluene) and RDX (1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine) with DNAN (2,4-di-nitroanisole) and NTO (3-nitro-1,2,4-triazol-5-one), which have similar explosive characteristics but are less likely to detonate unintentionally. Although these replacements are good explosives, basic information about their fate and transport was needed to evaluate their environmental impact and life-cycle management. This project measured their dissolution, photodegradation, and how aqueous solutions interact with soils, data critical to determining exposure potential and, consequently, risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.