Caspases are crucial activators of apoptosis and NF-κB signaling in vertebrates and invertebrates. In Drosophila, the caspase-9 counterpart Dronc is essential for most apoptotic death, whereas the caspase-8 homolog Dredd activates NF-κB signaling in response to gram-negative bacterial infection. The mechanics of caspase regulation are conserved and include the activities of a family of inhibitor of apoptosis (IAP) proteins. The RING-domain-bearing protein Defense repressor 1 (Dnr1), blocks ectopic Dredd-mediated induction of an NF-κB reporter in the Drosophila S2 cell line. In this study, we present novel data indicating that Dnr1 impacts on Dronc-dependent regulation of the apoptotic program. We show that depletion of Dnr1 results in elevated Dronc protein levels, which translates to increased caspase activation and activity upon induction of apoptosis. Conversely, we demonstrate that overexpression of Dnr1 blocks apoptotic caspase activity and prevents induction of apoptosis in tissue culture assays. Furthermore, we show that Dnr1 overexpression significantly reduces Dronc protein levels and identify the domains of Dnr1 necessary for these effects. From these data, we propose that Dnr1 inhibits initiator caspases in S2 cells.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.