<p>Realizar consultas em sistemas computacionais pode ser uma tarefa desafiadora, visto que, quando uma consulta é submetida por vários usuários, normalmente, as mesmas respostas são retornadas, independentemente de suas preferências e do contexto no qual a consulta ocorreu. Para facilitar esse processo, uma abordagem centrada no usuário pode ser usada visando prover a personalização da consulta. Neste trabalho, essa personalização é realizada considerando o contexto do usuário. Para tal, foi desenvolvida uma primeira versão de um <em>plugin</em> chamado CODI4In, que provê a persistência e recuperação das informações contextuais do usuário. Essas são representadas por meio de uma ontologia e armazenadas em um banco de dados baseado em grafos. Neste trabalho, apresentamos os resultados obtidos com a implementação e experimentos realizados.</p>
Recently, social networks have gained a huge popularity among internet users, serving diverse purposes and communities. With all the time spent using them, more and more information about their users and tasks are generated, and, consequently, more semantics underlying that could be acquired. Meanwhile, in data-oriented applications, the increasing amount of available data has made it hard for users to find the information they need in the way they consider relevant. To help matters, a user-centric approach may be used to enhance query answering and, particularly, provide query personalization. In this work, we address the issue of personalizing query answers in data-oriented applications considering the user context provided mainly by social network information. Moreover, we propose a user context management service named CODI4In, which offers mechanisms for cache management, context information persistence and recovery, as well as some algorithms for query personalization. To this end, it extracts users' social network information and uses it as context information. In this paper, we present the developed approach, demonstrate its applicability through a context and socially-aware Q&A application and present some results we have obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.