Multichannel electrode arrays offer insight into the working brain and serve to elucidate neural processes at the single-cell and circuit levels. Development of these tools is crucial for understanding complex behaviors and cognition and for advancing clinical applications. However, it remains a challenge to densely record from cell populations stably and continuously over long time periods. Many popular electrodes, such as tetrodes and silicon arrays, feature large cross-diameters that produce damage upon insertion and elicit chronic reactive tissue responses associated with neuronal death, hindering the recording of stable, continuous neural activity. In addition, most wire bundles exhibit broad spacing between channels, precluding simultaneous recording from a large number of cells clustered in a small area. The carbon fiber microelectrode arrays described in this protocol offer an accessible solution to these concerns. The study provides a detailed method for fabricating carbon fiber microelectrode arrays that can be used for both acute and chronic recordings in vivo. The physical properties of these electrodes make them ideal for stable and continuous long-term recordings at high cell densities, enabling the researcher to make robust, unambiguous recordings from single units across months.
Multichannel electrode arrays offer insight into the working brain and serve to elucidate neural processes at the single-cell and circuit levels. Development of these tools is crucial for understanding complex behaviors and cognition and for advancing clinical applications. However, it remains a challenge to densely record from cell populations stably and continuously over long time periods. Many popular electrodes, such as tetrodes and silicon arrays, feature large cross-diameters that produce damage upon insertion and elicit chronic reactive tissue responses associated with neuronal death, hindering the recording of stable, continuous neural activity. In addition, most wire bundles exhibit broad spacing between channels, precluding simultaneous recording from a large number of cells clustered in a small area. The carbon fiber microelectrode arrays described in this protocol offer an accessible solution to these concerns. The study provides a detailed method for fabricating carbon fiber microelectrode arrays that can be used for both acute and chronic recordings in vivo. The physical properties of these electrodes make them ideal for stable and continuous long-term recordings at high cell densities, enabling the researcher to make robust, unambiguous recordings from single units across months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.