Abstract. Modularity allows to estimate the quality of a partition into communities of a graph composed of highly inter-connected vertices. In this article, we introduce a complementary measure, based on inertia, and specially conceived to evaluate the quality of a partition based on real attributes describing the vertices. We propose also I-Louvain, a graph nodes clustering method which uses our criterion, combined with Newman's modularity, in order to detect communities in attributed graph where real attributes are associated with the vertices. Our experiments show that combining the relational information with the attributes allows to detect the communities more efficiently than using only one type of information. In addition, our method is more robust to data degradation.
In this paper, we present different combined clustering methods and we evaluate their performances and their results on a dataset with ground truth. This dataset, built from several sources, contains a scientific social network in which textual data is associated to each vertex and the classes are known. Indeed, while the clustering task is widely studied both in graph clustering and in non supervised learning, combined clustering which exploits simultaneously the relationships between the vertices and attributes describing them, is quite new. We argue that, depending on the kind of data we have and the type of results we want, the choice of the clustering method is important and we present some concrete examples for underlining this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.