Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty. INDEX TERMS Database forensics, database forensic investigation, digital forensics, investigation process model.
The digital forensic process as traditionally laid out begins with the collection, duplication, and authentication of every piece of digital media prior to examination. These first three phases of the digital forensic process are by far the most costly. However, complete forensic duplication is standard practice among digital forensic laboratories.The time it takes to complete these stages is quickly becoming a serious problem. Digital forensic laboratories do not have the resources and time to keep up with the growing demand for digital forensic examinations with the current methodologies. One solution to this problem is the use of pre-examination techniques commonly referred to as digital triage. Pre-examination techniques can assist the examiner with intelligence that can be used to prioritize and lead the examination process. This work discusses a proposed model for digital triage that is currently under development at Mississippi State University.
Abstract. As software becomes more complex, more sophisticated development and maintenance methods are needed to ensure software quality. Computer-aided prototyping achieves this via quickly built and iteratively updated prototypes of the intended system. This process requires automated support for keeping track of many independent changes and for exploring different combinations of alternative changes and refinements. This article formalizes the update and change merging process, extends the idea to multiple changes to the same base prototype, and introduces a new method of slicing prototypes. Applications of this technology include automatic updating of different versions of existing software with changes made to the baseline version of the system, integrating changes made by different design teams during development, and checking consistency after integration of seemingly disjoint changes to the same software system.
Research in digital forensics has yet to focus on modeling case domain information involved in investigations. This paper shows how concept mapping can be used to create an excellent alternative to the popular checklist approach used in digital forensic investigations. Concept mapping offers several benefits, including creating replicable, reusable techniques, simplifying and guiding the investigative process, capturing and reusing specialized forensic knowledge, and supporting training and knowledge management activities. The paper also discusses how concept mapping can be used to integrate case-specific details throughout the investigative process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.