Background and Purpose:We reported previously that stroke risk factors prepared the brain stem for the development of ischemia and hemorrhage and induced the production of tumor necrosis factor following an intrathecal injection of lipopolysaccharide, a prototypic monocyte-activating stimulus. This study evaluates whether blood or brain cells of hypertensive rats produce more proinflammatory and prothrombotic mediators than do blood or brain cells of normotensive rats.Methods: Levels of tumor necrosis factor, platelet-activating factor, 6-ketoprostaglandin F la , and thromboxane B 2 in the cerebrospinal fluid and blood of spontaneously hypertensive and normotensive Wistar-Kyoto rats were monitored before and after a challenge with lipopolysaccharide.Results: Little or no activity from these mediators was found in the cerebrospinal fluid or blood of saline-injected control animals. Intravenous administration of lipopolysaccharide (0.001, 0.1, and 1.8 nig/kg) produced dose-dependent increases in blood levels of all mediators in hypertensive rats. In normotensive rats the levels were less than in hypertensive rats and were not clearly dose-related. When lipopolysaccharide was injected intracerebroventricularly, more tumor necrosis factor was measured in the cerebrospinal fluid than in the blood, suggesting local synthesis of this cytokine. Levels of tumor necrosis factor and platelet-activating factor in the cerebrospinal fluid were higher in hypertensive than in normotensive rats. The thromboxane A 2 /prostacyclin ratio was not altered significantly between the two rat strains.Conclusions: It is suggested that the higher incidence of brain stem ischemia and hemorrhage after the intrathecal injection of lipopolysaccharide in hypertensive rats than in normotensive rats might be related to the higher levels of the two cytotoxic factors tumor necrosis factor and platelet-activating factor produced in response to such challenge.
Microvascular endothelial cells from the adult rat brain were cultured on Matrigel and found to express many differentiated properties including secretion of prostacyclin (PGI2) and von Willebrand's factor (vWF). Brain microvascular endothelial cells (BMECs) were purified by dextran and percoll gradients after enzymatic treatment and cultured under various conditions. BMECs that were plated on Matrigel stained positively for factor VIII-related antigen and incorporated Di-I-acetylated low density lipoprotein, whereas BMEC plated on fibronectin, gelatin, or uncoated dishes did not express any of the above properties which are characteristic of endothelial cells. vWF was measured by a sensitive ELISA in the culture media of BMECs plated on different types of matrices. Specificity of the anti-human vWF antibodies for the rat vWF was verified by immunoabsorption on a solid phase, sodium dodecyl sulfate, and Western blot analysis. BMECs also secreted vWF into the culture media only when the cells were plated on Matrigel, and this secretion was augmented after a 6 h incubation with an interleukin-1 tumor necrosis factor-alpha mixture, but not by lipopolysaccharide. From different matrices tested, only Matrigel permitted the secretion of PGI2 by BMECs. Cells also proved to be sensitive to mechanical stimulation and became refractory to secretagogue if the mechanical stimulation was serially repeated. Under the best conditions, stimulation of the cells with bradykinin (1 microM) substantially increased PGI2 secretion. These data indicate that growth of BMECs on Matrigel in vitro permits the expression of classical endothelial cell markers in a manner similar to the behavior of these cells in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.