Hidden trophic interactions are important in understanding food web ecology and evaluating the ecological risks and benefits associated with the introduction of exotic natural enemies in classical biological control programs. Although non-target risk is typically evaluated based on evidence of successful parasitism, parasitoid-induced host mortality not resulting in visible evidence of parasitism (i.e., nonreproductive effects) is often overlooked. The adventive establishment of Trissolcus japonicus, an exotic parasitoid of the introduced stink bug Halyomorpha halys, provides an opportunity to investigate the total impact of this parasitoid on target and non-target hosts in the field. We developed a new methodology to measure nonreproductive effects in this system, involving a species-specific diagnostic PCR assay for T. japonicus. We applied this methodology to field-deployed eggs of four pentatomid species, coupled with traditional rearing techniques. Nonreproductive effects were responsible for the mortality of an additional 5.6% of H. halys eggs due to T. japonicus, and were even more substantial in some of the non-target species (5.4–43.2%). The observed hidden mortality of native non-target species from an introduced parasitoid could change predictions about direct and indirect ecological interactions and the efficacy of biological control of the target pest.
Bull’s eye rot (BER) is a major economic postharvest disease of apple and pear that can be caused by four Neofabraea species: N. perennans, N. alba, N. malicorticis, and N. kienholzii. In Central Washington, BER is predominantly caused by N. perennans. The fungus infects fruit preharvest, and because of the dry growing season in the region, infections remain latent with symptoms expressed only after 3 to 4 months of storage, when BER incidences as high as 20% can been seen, especially in rainy seasons and on susceptible cultivars. To ensure early and efficient infection detections before BER symptoms become visible at point-of-care locations, a portable diagnostic tool based on loop-mediated isothermal amplification (LAMP) was developed using the β-tubulin gene. The LAMP assay was optimized and tested for specificity and sensitivity using DNA extracted from pure cultures of N. perennans and seven other fungal species. The results showed that the selected LAMP primer set was specific to N. perennans and highly sensitive as it detected DNA concentrations as low as 0.001 ng/µl after only 10 min. The assay was validated for N. perennans detection on artificially inoculated apples using a portable thermocycler, Genie II, without the need for DNA extraction. The LAMP assay detected N. perennans on apples inoculated with spore suspensions 3 weeks prior to harvest at concentrations of 103 spores/ml or higher. The assay was further validated using commercial Piñata apples from organic and conventional orchards, demonstrating the ability of this technique to amplify N. perennans from asymptomatic fruit in a commercial setting 3 months before commercial maturity. The LAMP assay developed for N. perennans detection can be easily expanded to detect the other BER causal species. LAMP has potential to be used in orchards and at point-of-care facilities to better inform on BER management at different fruit growth stages, and it has potential to be utilized to better understand the epidemiology of Neofabraea spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.