An existing Light Detection and Ranging (LiDAR) data set captured on the Romeo Malette Forest near Timmins, Ontario, was used to explore and demonstrate the feasibility of such data to enrich existing strategic forest-level resource inventory data. Despite suboptimal calibration data, stand inventory variables such as top height, average height, basal area, gross total volume, gross merchantable volume, and above-ground biomass were estimated from 136 calibration plots and validated on 138 independent plots, with root mean square errors generally less than 20% of mean values. Stand densities (trees per ha) were estimated with less precision (30%). These relationships were used as regression estimators to predict the suite of variables for each 400-m 2 tile on the 630 000-ha forest, with predictions capable of being aggregated in any user-defined manner-for a stand, block, or forest-with appropriate estimates of statistical precision. This pilot study demonstrated that LiDAR data may satisfy growing needs for inventory data to scale operational/tactical, through strategic needs, as well as provide spatial detail for planning and the optimization of forest management activities.Key words: forest inventory, Light Detection and Ranging (LiDAR), models, Seemingly Unrelated Regression RÉSUMÉ Un ensemble de données LiDAR (télédétection par laser) recueillies pour la Forêt Roméo Malette près de Timmins en Ontario, a été utilisé pour étudier et démontrer la possibilité d'utiliser ces données pour enrichir les données existantes d'inventaire des ressources forestières de premier plan. Malgré une calibration des données inférieure à ce qui était souhaité, les variables d'inventaire des peuplements comme la hauteur moyenne supérieure, la hauteur moyenne, la surface terrière, le volume brut total, le volume marchand total et la biomasse au-dessus du sol ont été estimées à partir de 136 parcelles de calibration et validées pour 138 parcelles indépendantes, avec une erreur quadratique moyenne géné-ralement inférieure à 20 % des valeurs moyennes. La densité des peuplements (arbres par hectare) a été estimée avec moins de précision (30 %). Ces relations ont été utilisées comme estimateurs de régressions utilisées pour générer une série de variables pour chaque unité de 400 m 2 de la forêt de 630 000 ha, avec des prédictions cumulables selon la requête de l'utilisateur-pour un peuplement, pour un bloc ou pour la forêt-avec des estimations appropriées d'une précision statistique. Ce projet pilote a démontré que les données LiDAR pourraient répondre aux besoins sans cesse croissants en matière de données d'inventaire pour définir les plans opérationnels/tactiques, bien que stratégiques, ainsi que pour établir les détails spatiaux requis pour la planification et l' optimisation des activités d'aménagement forestier.
Over the past two decades there has been an abundance of research demonstrating the utility of airborne light detection and ranging (LiDAR) for predicting forest biophysical/inventory variables at the plot and stand levels. However, to date there has been little effort to develop a set of protocols for data acquisition and processing that would move governments or the forest industry towards cost-effective implementation of this technology for strategic and tactical (i.e., operational) forest resource inventories. The goal of this paper is to initiate this process by examining the significance of LiDAR data acquisition (i.e., point density) for modeling forest inventory variables for the range of species and stand conditions representing much of Ontario, Canada. Field data for approximately 200 plots, sampling a broad range of forest types and conditions across Ontario, were collected for three study sites. Airborne LiDAR data, characterized by a mean density of 3.2 pulses m −2 were systematically decimated to produce additional datasets with densities of approximately 1.6 and 0.5 pulses m −2. Stepwise regression models, incorporating LiDAR height and density metrics, were developed for each of the three LiDAR datasets across a range of forest types Aside from a few cases (i.e., average height and density for some stand types), no decimation effect was observed with respect to the precision of the prediction of the majority of forest variables, which suggests that a mean density of 0.5 pulses m −2 is sufficient for plot and stand level modeling under these diverse forest conditions across Ontario.
Detailed 19441947 cruise data and maps were used to compare species composition, age-class distribution, and stand structure between 1945 and 2002, for a 190 000 ha industrial forest in New Brunswick, Canada. Softwood forest area in 1945 and 2002 was similar, at 40% and 42%, respectively, but mixed hardwoodsoftwood decreased from 37% to 18%, and hardwood increased from 10% to 25%. Forest management from 1945 to 2002 resulted in the forest (1) becoming younger, with 86% of the trees >70 years old in 2002 versus 44% in 1945, (2) becoming denser, with 100300 more stems per hectare and 47 m2/ha more basal area in 2002, and (3) having less balsam fir (Abies balsamea (L.) Mill.) 31%66% in 1945 versus 4%38% in 2002 of basal area for stands with >30% softwood. Management reduced balsam fir to lower mortality associated with spruce budworm (Choristoneura fumiferana (Clem.)) outbreaks. The area of old (≥70 years old, with ≥10 trees/ha ≥30 cm DBH) and large (≥70 years old, with ≥5 trees/ha ≥45 cm DBH) spruce-fir and mixedwood wildlife habitats decreased from 112 600 and 55 200 ha in 1945 to 8200 and 7200 in 2002, respectively, while hardwood habitat increased from 22 800 to 71 500 ha. Management increased timber production while maintaining similar softwood species composition, but altered age structure and areas of mixedwood and hardwood forest types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.