Femtosecond (fs) laser pulsed excitation of plasmonic nanoparticle (NP)−biomolecule conjugates is a promising method to locally heat biological materials. Studies have demonstrated that fs pulses of light can modulate the activity of DNA or proteins when attached to plasmonic NPs; however, the precision over subsequent biological function remains largely undetermined. Specifically, the temperature the localized biomolecules "experience" remains unknown. We used 55 nm gold nanoparticles (AuNPs) displaying double-stranded (ds) DNA to examine how, for dsDNA with different melting temperatures, the laser pulse energy fluence and bulk solution temperature affect the rate of local DNA denaturation. A universal "template" single-stranded DNA was attached to the AuNP surface, and three dye-labeled probe strands, distinct in length and melting temperature, were hybridized to it creating three individual dsDNA-AuNP bioconjugates. The dye-labeled probe strands were used to quantify the rate and amount of DNA release after a given number of light pulses, which was then correlated to the dsDNA denaturation temperature, resulting in a quantitative nanothermometer. The localized DNA denaturation rate could be modulated by more than threefold over the biologically relevant range of 8−53 °C by varying pulse energy fluence, DNA melting temperature, and surrounding bath temperature. With a modified dissociation equation tailored for this system, a "sensed" temperature parameter was extracted and compared to simulated AuNP temperature profiles. Determining actual biological responses in such systems can allow researchers to design precision nanoscale photothermal heating sources.
Schematic of a tetrameric β-galactosidase enzyme attached to and displaying 625 nm emitting QDs coated with a CL4 ligand via each of the 4 pendent His6 tags.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.