The aim of this study was to map the viscerotopic representation of the upper alimentary tract in the sensory ganglia of the IXth and Xth cranial nerves and in the subnuclei of the solitary and spinal trigeminal tracts. Therefore, in 172 rats 0.5-65 microliters of horseradish peroxidase (HRP), wheat germ agglutinin-HRP, or cholera toxin-HRP were injected into the trunks and major branches of the IXth and Xth cranial nerves as well as into the musculature and mucosa of different levels of the upper alimentary and respiratory tracts. The results demonstrate that the sensory ganglia of the IXth and Xth nerves form a fused ganglionic mass with continuous bridges of cells connecting the proximal and distal portions of the ganglionic complex. Ganglionic perikarya were labeled in crude, overlapping topographical patterns after injections of tracers into nerves and different parts of the upper alimentary tract. After injections into the soft palate, pharynx, esophagus, and stomach, anterograde labeling was differentially distributed in distinct subnuclei in the nucleus of the tractus solitarius (NTS). Palatal and pharyngeal injections resulted primarily in labeling of the interstitial and intermediate subnuclei of the NTS and in the paratrigeminal islands (PTI) and spinal trigeminal complex. Esophageal and stomach wall injections resulted in labeling primarily of the subnucleus centralis and subnucleus gelatinosus, respectively. The distribution of upper alimentary tract vagal-glossopharyngeal afferents in the medulla oblongata has two primary groups of components, i.e., a viscerotopic distribution in the NTS involved in ingestive and respiratory reflexes and a distribution coextensive with fluoride-resistant acid-phosphatase-positive regions of the PTI and spinal trigeminal nucleus presumably involved in visceral reflexes mediated by nociceptive or chemosensitive C fibers.
The nucleus ambiguus has been reported to innervate various thoracic and abdominal viscera in addition to the musculature of the upper alimentary tract. However, the literature is contradictory as to how different regions of the nucleus ambiguus innervate specific organs. Therefore, a systematic investigation of the viscerotopic organization of the nucleus ambiguus was undertaken. In 102 rats, 0.5-10.0 microliter of HRP, WGA-HRP, cholera toxin-HRP or fluorescent tracers were injected into the IXth, Xth, and XIth cranial nerves and the major branches of the Xth as well as organs supplied by them. The results demonstrate that the nucleus ambiguus in the rat is made up of two major longitudinal divisions: a dorsal division comprised of three rostrocaudally aligned subdivisions representing the special visceral efferent component, and a ventral division comprised of at least two subdivisions representing the general visceral efferent component. The dorsal division corresponds to the nucleus ambiguus in the narrow sense and comprises a rostral esophagomotor compact formation, an intermediate pharyngolaryngomotor semicompact formation, and a caudal laryngomotor loose formation. Each of these formations displays a characteristic dendroarchitecture. The stylopharyngeal and cricothyroid motoneurons are displaced rostrad from the main pharyngeal and laryngeal motoneuronal pools. Thyropharyngeal (lower constrictor) motoneurons occupy the rostral half of the semi-compact formation and hyopharyngeal (middle constrictor) motoneurons its entire length. The ventral division of the nucleus ambiguus corresponds to the external formation, extends along the entire length of the medulla oblongata, and contains preganglionic neurons innervating the heart and supradiaphragmatic structures innervated by the glossopharyngeal and the superior laryngeal nerves.
Amygdalotegmental projections were studied in 26 cats after injections of horseradish peroxidase (HRP) in the diencephalon, midbrain and lower brain stem and in 6 cats after injection of 3H-leucine in the amygdala. Following HRP injections in the posterior hypothalamus, periaqueductal gray (PAG) and tegmentum many retrogradely labeled neurons were present in the central nucleus (CE) of the amygdala, primarily ipsilaterally. Injections of HRP in the posterior hypothalamus and mesencephalon also resulted in the labeling of neurons in the basal nucleus, pars magnocellularis. Following 3H-leucine injections in CE and adjacent structures autoradiographically labeled fibers were present in the stria terminalis and ventral amygdalofugal pathways. In the mesencephalon heavily labeled fiber bundles were located lateral to the red nucleus. Labeled fibers and terminals were distributed to the mesencephalic reticular formation, substantia nigra, ventral tegmental area and PAG. In the pontine and medullary tegmentum the bulk of passing fibers was located laterally in the reticular formation. Many labeled fibers and terminals were distributed to the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus and lateral tegmental fields. Many terminals were also present in the solitary nucleus and dorsal motor nucleus of the vagus nerve. The location of the cells of origin and the distribution of the terminals of the amygdalotegmental projection suggest that this pathway plays an important role in the integration of somatic and autonomic responses associated with affective defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.