The widespread distribution of the freshwater shrimp Paratya australiensis in eastern Australia suggests that populations of this species have been connected in the past. Amphidromy is ancestral in these shrimps, although many extant populations are known to be restricted to freshwater habitats. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to examine diversity within P. australiensis and to assess the relative importance of amphidromy in its evolutionary history. We hypothesized that if transitions from an amphidromous to a freshwater life history were important, then we would find a number of divergent lineages restricted to single or groups of nearby drainages. Alternatively, if amphidromy was maintained within the species historically, we expected to find lineages distributed over many drainages. We assumed that the only way for divergence to occur within amphidromous lineages was if dispersal was limited to between nearby estuaries, which, during arid periods in the earth's history, became isolated from one another. We found nine highly divergent mtDNA lineages, estimated to have diverged from one another in the late Miocene/early Pliocene, when the climate was more arid than at present. Despite this, the geographic distribution of lineages and haplotypes within lineages did not support the notion of a stepping-stone model of dispersal between estuaries. We conclude that the extensive divergence has most likely arisen through a number of independent amphidromy-freshwater life history transitions, rather than via historical isolation of amphidromy populations. We also found evidence for extensive movement between coastal and inland drainages, supporting the notion that secondary contact between lineages may have occurred as a result of drainage rearrangements. Finally, our data indicate that P. australiensis is likely a complex of cryptic species, some of which are widely distributed, and others geographically restricted.
A phylogeographic survey was used to elucidate the relative roles of historical processes and contemporary gene flow in structuring the genetic pattern observed with Mogurnda adspersa. This species of freshwater fish is found in the rivers and streams of the northeastern highlands of Queensland, Australia. Specifically, this project focused on populations in the Tully and Herbert Rivers in the Atherton Tablelands. Sequence analysis indicated that three distinct clades exist in the headwaters of the Tully River. The population sampled from one of the Tully River streams (Cheetah Creek) contained haplotypes that displayed approximately 3.4% sequence divergence from other haplotypes detected in this river. Furthermore, these haplotypes formed part of the clade which exists throughout not only the Herbert River but other surrounding drainages in the area. These results support the hypothesis that the current genetic structure is strongly affected by changes in drainage patterns due to geomorphological processes that occurred in the recent past.
1. This study examined genetic variation within and among populations of the caddis fly Tasiagma ciliata (Tasimiidae: Trichoptera) from rainforest streams in south‐east Queensland, Australia.
2. Very low levels of genetic differentiation at large spatial scales, between subcatchments and between catchments, indicated that dispersal by the winged adults is widespread. However, significant genetic differentiation at the smallest spatial scale examined, within reaches in a single stream, suggested limited movement by larvae within streams.
3. A patchy distribution of deviations from Hardy–Weinberg equilibrium and differences in patterns among allozyme loci suggested that populations in particular reaches were the result of only a few matings.
4. These results are surprising, given the large numbers of larvae present within a single reach. We suggest that stochastic effects of recruitment may underlie much of the spatial and temporal variation in population numbers in these rainforest streams.
BackgroundGiant freshwater prawn (Macrobrachium rosenbergii or GFP), is the most economically important freshwater crustacean species. However, as little is known about its genome, 454 pyrosequencing of cDNA was undertaken to characterise its transcriptome and identify genes important for growth.Methodology and Principal FindingsA collection of 787,731 sequence reads (244.37 Mb) obtained from 454 pyrosequencing analysis of cDNA prepared from muscle, ovary and testis tissues taken from 18 adult prawns was assembled into 123,534 expressed sequence tags (ESTs). Of these, 46% of the 8,411 contigs and 19% of 115,123 singletons possessed high similarity to sequences in the GenBank non-redundant database, with most significant (E value < 1e–5) contig (80%) and singleton (84%) matches occurring with crustacean and insect sequences. KEGG analysis of the contig open reading frames identified putative members of several biological pathways potentially important for growth. The top InterProScan domains detected included RNA recognition motifs, serine/threonine-protein kinase-like domains, actin-like families, and zinc finger domains. Transcripts derived from genes such as actin, myosin heavy and light chain, tropomyosin and troponin with fundamental roles in muscle development and construction were abundant. Amongst the contigs, 834 single nucleotide polymorphisms, 1198 indels and 658 simple sequence repeats motifs were also identified.ConclusionsThe M. rosenbergii transcriptome data reported here should provide an invaluable resource for improving our understanding of this species' genome structure and biology. The data will also instruct future functional studies to manipulate or select for genes influencing growth that should find practical applications in aquaculture breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.