This study examined whether an EEG biofeedback protocol could improve outcome measures for a mixed substance abusing inpatient population. Method. One hundred twenty-one volunteers undergoing an inpatient substance abuse program were randomly assigned to the EEG biofeedback or control group. EEG biofeedback included training in Beta and SMR to address attentional variables, followed by an alpha-theta protocol. Subjects received a total of 40 to 50 biofeedback sessions. The control group received additional time in treatment equivalent to experimental procedure time. The Test of Variables of Attention (TOVA), and MMPI, were administered with both tester and subject blind as to group placement to obtain unbiased baseline data. Treatment retention and abstinence rates as well as psychometric and cognitive measures were compared. Results. Experimental subjects remained in treatment significantly longer than the control group (p < 0.005). Of the experimental subjects completing the protocol, 77% were abstinent at 12 months, compared to 44% for the controls. Experimental subjects demonstrated significant improvement on the TOVA (p < .005) after an average of 13 beta-SMR sessions. Following alpha-theta training, significant differences were noted on 5 of the 10 MMPI-2 scales at the p < .005 level. Conclusions. This protocol enhanced treatment retention, variables of attention, and abstinence rates one year following treatment.
About one third of patients with epilepsy do not benefit from medical treatment. For these patients electroencephalographic (EEG) biofeedback is a viable alternative. EEG biofeedback, or neurofeedback, normalizes or enhances EEG activity by means of operant conditioning. While dozens of scientific reports have been published on neurofeedback for seizure disorder, most have been case series with too few subjects to establish efficacy. The purpose of this paper is to meta-analyze existing research on neurofeedback and epilepsy. We analyzed every EEG biofeedback study indexed in MedLine, PsychInfo, and PsychLit databases between 1970 and 2005 on epilepsy that provided seizure frequency change in response to feedback. Sixty-three studies have been published, 10 of which provided enough outcome information to be included in a meta-analysis. All studies consisted of patients whose seizures were not controlled by medical therapies, which is a very important factor to keep in mind when interpreting the results. Nine of 10 studies reinforced sensorimotor rhythms (SMR) while 1 study trained slow cortical potentials (SCP). All studies reported an overall mean decreased seizure incidence following treatment and 64 out of 87 patients (74%) reported fewer weekly seizures in response to EEG biofeedback. Treatment effect was mean log (post/pre) where pre and post represent number of seizures per week prior to treatment and at final evaluation, respectively. Due to prevalence of small groups, Hedges's g was computed for effect size. As sample heterogeneity was possible (Q test, p=.18), random effects were assumed and the effect of intervention was -0.233, SE = 0.057, z = -4.11, p<.001. Based on this meta-analysis, EEG operant conditioning was found to produce a significant reduction on seizure frequency. This finding is especially noteworthy given the patient group, individuals who had been unable to control their seizures with medical treatment.
Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS 2 and WS 2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.
Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.