Postural tachycardia syndrome (PoTS) is a poorly understood but important cause of orthostatic intolerance resulting from cardiovascular autonomic dysfunction. PoTS is distinct from the syndromes of autonomic failure usually associated with orthostatic hypotension, such as pure autonomic failure and multiple system atrophy. Individuals affected by PoTS are mainly young (aged between 15 years and 40 years) and predominantly female. The symptoms--palpitations, dizziness and occasionally syncope--mainly occur when the patient is standing upright, and are often relieved by sitting or lying flat. Common stimuli in daily life, such as modest exertion, food ingestion and heat, are now recognized to be capable of exacerbating the symptoms. Onset of the syndrome can be linked to infection, trauma, surgery or stress. PoTS can be associated with various other disorders; in particular, joint hypermobility syndrome (also known as Ehlers-Danlos syndrome hypermobility type, formerly termed Ehlers-Danlos syndrome type III). This Review describes the characteristics and neuroepidemiology of PoTS, and outlines possible pathophysiological mechanisms of this syndrome, as well as current and investigational treatments.
Heat stress increases limb blood flow and cardiac output (Q) in humans, presumably in sole response to an augmented thermoregulatory demand of the skin circulation. Here we tested the hypothesis that local hyperthermia also increases skeletal muscle blood flow at rest and during exercise. Hemodynamics, blood and tissue oxygenation, and muscle, skin, and core temperatures were measured at rest and during exercise in 11 males across four conditions of progressive whole body heat stress and at rest during isolated leg heat stress. During whole body heat stress, leg blood flow (LBF), Q, and leg (LVC) and systemic vascular conductance increased gradually with elevations in muscle temperature both at rest and during exercise (r(2) = 0.86-0.99; P < 0.05). Enhanced LBF and LVC were accompanied by reductions in leg arteriovenous oxygen (a-vO(2)) difference and increases in deep femoral venous O(2) content and quadriceps tissue oxygenation, reflecting elevations in muscle and skin perfusion. The increase in LVC occurred despite an augmented plasma norepinephrine (P < 0.05) and was associated with elevations in muscle temperature (r(2) = 0.85; P = 0.001) and arterial plasma ATP (r(2) = 0.87; P < 0.001). Isolated leg heat stress accounted for one-half of the increase in LBF with severe whole body heat stress. Our findings suggest that local hyperthermia also induces vasodilatation of the skeletal muscle microvasculature, thereby contributing to heat stress and exercise hyperemia. The increased limb muscle vasodilatation in these conditions of elevated muscle sympathetic vasoconstrictor activity is closely related to the rise in arterial plasma ATP and local tissue temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.