The accumulation of monomethyl mercury (CH3Hg+) in aquatic ecosystems is a redox sensitive process that is accelerated under sulfate-reducing conditions. While nitrate (NO3-) reduction is energetically favored over sulfate reduction, the influence of NO3 on the accumulation of CH3Hg+ has not been reported in the literature. We examined temporal and vertical patterns in redox constituents and CH3Hg+ concentrations in the hypolimnion of a dimictic lake, Onondaga Lake, prior to and following increases in NO3- inputs. Detailed water-column profiles and a long-term record revealed marked decreases in the accumulation of CH3Hg+ in the anoxic hypolimnion coinciding with long-term decreases in the deposition of organic matter coupled with recent increases in NO3-concentrations. CH3Hg+ concentrations in the hypolimnion were substantially abated when No3 was present above the sediment-water interface. A decrease in the peak hypolimnetic mass of CH3Hg+ and shortening of the period of elevated CH3Hg+ concentrations resulted in more than a 50% decline in the accumulated CH3Hg+. N03- regulation of CH3Hg+ accumulation may be a widespread phenomenon in oxygen-limited freshwater and terrestrial environments, and could have an important notpreviously recognized, effect on the biogeochemistry of mercury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.