The software program TreeSAAP measures the selective influences on 31 structural and biochemical amino acid properties during cladogenesis, and performs goodness-of-fit and categorical statistical tests.
Cetaceans have most likely experienced metabolic shifts since evolutionarily diverging from their terrestrial ancestors, shifts that may be reflected in the proteins such as cytochrome b that are responsible for metabolic efficiency. However, accepted statistical methods for detecting molecular adaptation are largely biased against even moderately conservative proteins because the primary criterion involves a comparison of nonsynonymous and synonymous substitution rates (dN/dS); they do not allow for the possibility that adaptation may come in the form of very few amino acid changes. We apply the MM01 model to the possible molecular adaptation of cytochrome b among cetaceans because it does not rely on a dN/dS ratio, instead evaluating positive selection in terms of the amino acid properties that comprise protein phenotypes that selection at the molecular level may act upon. We also apply the codon-degeneracy model (CDM), which focuses on evaluating overall patterns of nucleotide substitution in terms of base exchange, codon position, and synonymy to estimate the overall effect of selection. Using these relatively new models, we characterize the molecular adaptation that has occurred in the cetacean cytochrome b protein by comparing revealed amino acid replacement patterns to those found among artiodactyls, the modern terrestrial mammals found to be most closely related to cetaceans. Our findings suggest that several regions of the cetacean cytochrome b protein have experienced molecular adaptation. Also, these adaptations are spatially associated with domain structure, protein function, and the structure and function of the cytochrome bc(1) complex and its constituents. We also have found a general correlation between the results of the analytical software programs TreeSAAP (which implements the MM01 model) and CDM (which implements the codon-degeneracy model).
A steady decline in cervical cancer incidence and mortality in the United States has been attributed to increased uptake of cervical cancer screening tests such as Papanicolau (Pap) tests. However, disparities in Pap test compliance exist, and may be due in part to perceived barriers or lack of knowledge about risk factors for cervical cancer. This study aimed to assess correlates of cervical cancer risk factor knowledge and examine socio-demographic predictors of self-reported barriers to screening among a group of low-income uninsured women. Survey and procedure data from 433 women, who received grant-funded cervical cancer screenings over a span of 33 months, were examined for this project. Data included demographics, knowledge of risk factors, and agreement on potential barriers to screening. Descriptive analysis showed significant correlation between educational attainment and knowledge of risk factors (r = 0.1381, P < 0.01). Multivariate analyses revealed that compared to Whites, Hispanics had increased odds of identifying fear of finding cancer (OR 1.56, 95% CI 1.00–2.43), language barriers (OR 4.72, 95% CI 2.62–8.50), and male physicians (OR 2.16, 95% CI 1.32–3.55) as barriers. Hispanics (OR 1.99, 95% CI 1.16–3.44) and Blacks (OR 2.06, 95% CI 1.15–3.68) had a two-fold increase in odds of agreeing that lack of knowledge was a barrier. Identified barriers varied with age, marital status and previous screening. Programs aimed at conducting free or subsidized screenings for medically underserved women should include culturally relevant education and patient care in order to reduce barriers and improve screening compliance for safety-net populations.
The unwitting inclusion of convergent characters in phylogenetic estimates poses a serious problem for efforts to recover phylogeny. Convergence is not inscrutable, however, particularly when one group of characters tracks phylogeny and another set tracks adaptive history. In such cases, convergent characters may be correlated with one or a few functional anatomical units and readily identifiable by using comparative methods. Stifftail ducks (Oxyurinae) offer one such opportunity to study correlated character evolution and function in the context of phylogenetic reconstruction. Morphological analyses place stifftail ducks as part of a large clade of diving ducks that includes the sea ducks (Mergini), Hymenolaimus, Merganetta, and Tachyeres, and possibly the pochards (Aythyini). Molecular analyses, on the other hand, place stifftails far from other diving ducks and suggest, moreover, that stifftails are polyphyletic. Mitochondrial cytochrome b gene sequences of eight stifftail species traditionally supposed to form a clade were compared with each other and with sequences from 50 other anseriform and galliform species. Stifftail ducks are not the sister group of sea ducks but lie outside the typical ducks (Anatinae). Of the four traditional stifftail genera, monophyly of Oxyura and its sister group relationship with Nomonyx are strongly supported. Heteronetta probably is the sister group of that clade, but support is weak. Biziura is not a true stifftail. Within Oxyura, Old World species (O. australis, O. leucocephala, O. maccoa) appear to form a clade, with New World species (O. jamaicensis, O. vittata) branching basally. Incongruence between molecules and morphology is interpreted to be the result of adaptive specialization and functional convergence in the hind limbs of Biziura and true stifftails. When morphological characters are divided into classes, only hind-limb characters are significantly in conflict with the molecular tree. Likewise, null models of synonymous and nonsynonymous substitution based on patterns of codon-degeneracy and chemical dissimilarity indicate that the nucleotide and amino acid changes postulated by the molecular tree are more plausible than those postulated by the morphological tree. These findings teach general lessons about the utility of highly adaptive characters (in particular those related to foraging ecology) and underscore the problems that convergence can pose for attempts to recover phylogeny. They also demonstrate how the concept of natural data partitions and simple models of evolution (e.g., parsimony, likelihood, neutrality) can be used to test the accuracy of independent phylogenetic estimates and provide arguments in favor of one tree topology over another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.