The midbrain is biomechanically susceptible to force loading from repetitive subconcussive head impacts (RSHI), is a site of tauopathy in chronic traumatic encephalopathy (CTE), and regulates functions (e.g., eye movements) often disrupted in concussion. In a prospective longitudinal design, we demonstrate there are reductions in midbrain white matter integrity due to a single season of collegiate football, and that the amount of reduction in midbrain white matter integrity is related to the amount of rotational acceleration to which players’ brains are exposed. We then replicate the observation of reduced midbrain white matter integrity in a retrospective cohort of individuals with frank concussion, and further show that variance in white matter integrity is correlated with levels of serum-based tau, a marker of blood-brain barrier disruption. These findings mean that noninvasive structural MRI of the midbrain is a succinct index of both clinically silent white matter injury as well as frank concussion.
Frontal and temporal white matter pathways play key roles in language processing, but the specific computations supported by different tracts remain a matter of study. A role in speech planning has been proposed for a recently described pathway, the frontal aslant tract (FAT), which connects the posterior inferior frontal gyrus to the pre-SMA. Here, we use longitudinal functional and structural MRI and behavioral testing to evaluate the behavioral consequences of a lesion to the left FAT that was incurred during surgical resection of a frontal glioma in a 60-year-old woman, Patient AF. The pattern of performance in AF is compared, using the same measures, with that in a 37-year-old individual who underwent a left anterior temporal resection and hippocampectomy (Patient AG). AF and AG were both cognitively intact preoperatively but exhibited specific and doubly dissociable behavioral deficits postoperatively: AF had dysfluent speech but no word finding difficulty, whereas AG had word finding difficulty but otherwise fluent speech. Probabilistic tractography showed that the left FAT was lesioned postoperatively in AF (but not AG) whereas the inferior longitudinal fasciculus was lesioned in AG (but not AF). Those structural changes were supported by corresponding changes in functional connectivity to the posterior inferior frontal gyrus: decreased functional connectivity postoperatively between the posterior inferior frontal gyrus and pre-SMA in AF (but not AG) and decreased functional connectivity between the posterior inferior frontal gyrus and the middle temporal gyrus in AG (but not AF). We suggest from these findings that the left FAT serves as a key communicative link between sentence planning and lexical access processes.
The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain.
These results indicate that traumatic episodes early in life, including brain insults, do not appear to increase the susceptibility of developing eating disorder symptomatology, depression, deficiency of self-esteem, or distortion of body shape during late adolescence.
Objective To evaluate the relationship of maternal antenatal magnesium sulfate (MgSO4) with neonatal cranial ultrasound abnormalities and cerebral palsy (CP). Study design In a randomized trial of MgSO4 or placebo in women at high risk of preterm delivery, up to three cranial ultrasound were obtained in the neonatal period. Images were reviewed by at least two pediatric radiologists masked to treatment and other clinical conditions. Diagnoses were predefined for intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL), intracerebral echolucency or echodensity, and ventriculomegaly. CP was diagnosed at two years by standardized neurological examination. Results Intraventricular hemorrhage, PVL, intracerebral echolucency or echodensity, and ventriculomegaly were all strongly associated with an increased risk of CP. MgSO4 administration did not affect the risk of cranial ultrasound abnormality observed at 35 weeks post-menstrual age or later. However, for the 82% of infants born at <32 weeks gestation, MgSO4 was associated with a reduction in risk of echolucency or echodensity. The reduction in risk for echolucency explained 21% of the effect of MgSO4 on CP (p=0.04), and for echodensity explained 20% of the effect (p=0.02). Conclusions MgSO4 given prior to preterm delivery was associated with decreased risk of developing echodensities and echolucencies at <32 weeks gestation. However, this effect can only partially explain the effect of MgSO4 on CP at two years of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.