We have shown the effect of increasing x-ray energy as well as projection domain subtraction on breast structural noise. Further, we have exhibited the utility of the CLSM for DE and TE subtraction CE imaging in the optimization of imaging parameters such as x-ray energy, f , and w as well as guiding the understanding of their effects on image contrast and noise.
Contrast-enhanced dual energy digital breast tomosynthesis (CE-DE-DBT) is designed to image iodinated masses while suppressing breast anatomical background. Scatter is a problem, especially for high energy acquisition, in that it causes severe cupping artifact and iodine quantitation errors. We propose a patient specific scatter correction (SC) algorithm for CE-DE-DBT. The empirical algorithm works by interpolating scatter data outside the breast shadow into an estimate within the breast shadow. The interpolated estimate is further improved by operations that use an easily obtainable (from phantoms) table of scatter-to-primary-ratios (SPR) - a single SPR value for each breast thickness and acquisition angle. We validated our SC algorithm for two breast emulating phantoms by comparing SPR from our SC algorithm to that measured using a beam-passing pinhole array plate. The error in our SC computed SPR, averaged over acquisition angle and image location, was about 5%, with slightly worse errors for thicker phantoms. The SC projection data, reconstructed using OS-SART, showed a large degree of decupping. We also observed that SC removed the dependence of iodine quantitation on phantom thickness. We applied the SC algorithm to a CE-DE-mammographic patient image with a biopsy confirmed tumor at the breast periphery. In the image without SC, the contrast enhanced tumor was masked by the cupping artifact. With our SC, the tumor was easily visible. An interpolation-based SC was proposed by (Siewerdsen et al., 2006) for cone-beam CT (CBCT), but our algorithm and application differ in several respects. Other relevant SC techniques include Monte-Carlo and convolution-based methods for CBCT, storage of a precomputed library of scatter maps for DBT, and patient acquisition with a beam-passing pinhole array for breast CT. Our SC algorithm can be accomplished in clinically acceptable times, requires no additional imaging hardware or extra patient dose and is easily transportable between sites.
Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.