The pH-selective insertion and folding of a membrane peptide, pHLIP [pH (low) insertion peptide], can be used to target acidic tissue in vivo, including acidic foci in tumors, kidneys, and inflammatory sites. In a mouse breast adenocarcinoma model, fluorescently labeled pHLIP finds solid acidic tumors with high accuracy and accumulates in them even at a very early stage of tumor development. The fluorescence signal is stable for >4 days and is approximately five times higher in tumors than in healthy counterpart tissue. In a rat antigen-induced arthritis model, pHLIP preferentially accumulates in inflammatory foci. pHLIP also maps the renal cortical interstitium; however, kidney accumulation can be reduced significantly by providing mice with bicarbonatecontaining drinking water. The peptide has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an ␣-helix. At physiological pH, the equilibrium is toward water, which explains its low affinity for cells in healthy tissue; at acidic pH, titration of Asp residues shifts the equilibrium toward membrane insertion and tissue accumulation. The replacement of two key Asp residues located in the transmembrane part of pHLIP by Lys or Asn led to the loss of pH-sensitive insertion into membranes of liposomes, red blood cells, and cancer cells in vivo, as well as to the loss of specific accumulation in tumors. pHLIP nanotechnology introduces a new method of detecting, targeting, and possibly treating acidic diseased tissue by using the selective insertion and folding of membrane peptides.cancer targeting ͉ imaging ͉ peptide insertion M any pathological conditions such as cancer, ischemic stroke, inflammation, atherosclerotic plaques, and others are associated with increased metabolic activity and hypoxia resulting in an elevated extracellular acidity (1-6). Hypoxia and acidity have emerged as important factors in tumor biology and responses to cancer treatment. Imaging of hypoxic and acidic regions could provide new information about disease localization and progression and might enhance diagnosis and therapy. Here we describe the use of a peptide, pHLIP [pH (low) insertion peptide], to selectively accumulate in and label acidic tissues. We previously reported that the pHLIP bionanosyringe, a 36-aa peptide derived from the bacteriorhodopsin C helix, has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an ␣-helix. At physiological pH the water-soluble form is favored, whereas at acidic pH the transmembrane ␣-helix predominates (Fig. 1a) (7). We show that at low pH, pHLIP can translocate cell-impermeable cargo molecules that are disulfide-linked to the C terminus across a cell membrane, where they are released in the cytoplasm by reduction of the disulfide bond (8, 9). Among the successfully translocated molecules are organic dyes, phalloidin (a polar, cyclic peptide), and a 12-mer peptide nucleic acid.