Over short time scales, muscle fibres maintain a nearly constant volume of intracellular fluid. This fluid is essential to normal biochemical function, but its role in determining the mechanical properties of muscle has been considered in only a few theoretical analyses. Here we investigate the mechanical role of fluid in a fundamental property of muscle, its development of passive tension in response to stretch. We test a model of muscle structure in which incompressible fluid directly influences passive tension by constraining the geometry of intramuscular connective tissues. This interaction is demonstrated using a simple physical model of muscle morphology comprising a fluid-filled bladder wrapped by helical fibres. The behaviour of the model is compared with that of isolated bullfrog muscle subjected to an osmotic perturbation of intracellular fluid volume. Increasing muscle volume by 40% resulted in 69% increased passive tension, occurring in a manner consistent with the behaviour of the model. These observations support the notion that the interaction of connective tissues with the muscle fibres they surround influences the mechanical behaviour of whole muscles, and highlight the role of fluid as a mechanical component of muscle.
Fluid fills intracellular, extracellular, and capillary spaces within muscle. During normal physiological activity, intramuscular fluid pressures develop as muscle exerts a portion of its developed force internally. These pressures, typically ranging between 10 and 250 mmHg, are rarely considered in mechanical models of muscle but have the potential to affect performance by influencing force and work produced during contraction. Here, we test a model of muscle structure in which intramuscular pressure directly influences contractile force. Using a pneumatic cuff, we pressurize muscle midcontraction at 260 mmHg and report the effect on isometric force. Pressurization reduced isometric force at short muscle lengths (e.g., −11.87% of P0 at 0.9 L0), increased force at long lengths (e.g., +3.08% of P0 at 1.25 L0), but had no effect at intermediate muscle lengths ∼1.1–1.15 L0. This variable response to pressurization was qualitatively mimicked by simple physical models of muscle morphology that displayed negative, positive, or neutral responses to pressurization depending on the orientation of reinforcing fibers representing extracellular matrix collagen. These findings show that pressurization can have immediate, significant effects on muscle contractile force and suggest that forces transmitted to the extracellular matrix via pressurized fluid may be important, but largely unacknowledged, determinants of muscle performance in vivo.
Muscle contraction is a three-dimensional process, as anyone who has observed a bulging muscle knows. Recent studies suggest that the three-dimensional nature of muscle contraction influences its mechanical output. Shape changes and radial forces appear to be important across scales of organization. Muscle architectural gearing is an emerging example of this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.