Background: Pseudomonas aeruginosa, a pathogen infecting those with cystic fibrosis, encounters toxicity from phagocyte-derived reactive oxidants including hydrogen peroxide during active infection. P. aeruginosa responds with adaptive and protective strategies against these toxic species to effectively infect humans. Despite advances in our understanding of the responses to oxidative stress in many specific cases, the connectivity between targeted protective genes and the rest of cell metabolism remains obscure.
Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism.
Gossypol has received significant attention as a result of its potential therapeutic application as a male antifertility agent. Furthermore, recent research examining the biological activity of gossypol has revealed a number of other promising lines of enquiry. These have focused on the antitumour, antiviral and antioxidant actions of the compound in various disease states. This article provides an overview of the studies on the biological activity of gossypol, with particular attention paid to the mechanisms of its activity and its prospect as a medicinal product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.