The monsoon tropics of northern Australia are a globally significant biodiversity hotspot, but its phylogeography is poorly known. A major challenge for this region is to understand the biogeographical processes that have shaped the distribution and diversity of taxa, without detailed knowledge of past climatic and environmental fluctuations. Although molecular data have great potential to address these questions, only a few species have been examined phylogeographically. Here, we use the widely distributed and abundant short-eared rock-wallaby (Petrogale brachyotis; n = 101), together with the sympatric monjon (P. burbidgei; n = 11) and nabarlek (P. concinna; n = 1), to assess historical evolutionary and biogeographical processes in northern Australia. We sequenced ∼1000 bp of mitochondrial DNA (control region, ND2) and ∼3000 bp of nDNA (BRCA1, ω-globin and two anonymous loci) to investigate phylogeographic structuring and delineate the time-scale of diversification within the region. Our results indicate multiple barriers between the Top End (Northern Territory) and Kimberley (Western Australia), which have caused divergence throughout the Plio-Pleistocene. Eight geographically discrete and genetically distinct lineages within the brachyotis group were identified, five of which are separated by major river valleys (Ord, Victoria, Daly), arid lowlands and discontinuous sandstone ranges. It is likely that these barriers have similarly influenced genetic structure in other monsoonal biota.
The wild and captive koala population of the Mt Lofty Ranges in South Australia has a high level of renal dysfunction in which crystals consistent with calcium oxalate have been observed in the kidneys. This study aimed to describe the pathological features of the renal disease in this population, confirm the composition of renal crystals as calcium oxalate, and determine whether any age or sex predispositions exist for this disease. A total of 51 koalas (28 wild rescues, 23 captive) were examined at necropsy, of which 28 (55%) were found to have gross and/or histological evidence of oxalate nephrosis. Histopathological features included intratubular and interstitial inflammation, tubule dilation, glomerular atrophy, tubule loss, and cortical fibrosis. Calcium oxalate crystals were demonstrated using a combination of polarization microscopy, alizarin red S staining, infrared spectroscopy, and energy-dispersive X-ray analysis with scanning electron microscopy. Uric acid and phosphate deposits were also shown to be present but were associated with minimal histopathological changes. No significant differences were found between the numbers of affected captive and wild rescued koalas; also, there were no sex or age predispositions identified, but it was found that oxalate nephrosis may affect koalas <2 years of age. The findings of this study suggest that oxalate nephrosis is a leading disease in this koala population. Possible causes of this disease are currently under investigation.
Koalas have undergone a series of sequential founding events on islands in south‐eastern Australia in recent times. Populations in South Australia at the Eyre Peninsula and Mt Lofty Ranges were founded in the 1960s from a colony on Kangaroo Island. The Kangaroo Is. colony was derived from animals introduced to French Island from mainland Victoria over a century ago. In this study, we first use microsatellite markers to quantify levels of genetic variation within the South Australian koala populations and the relatively unperturbed Strzelecki Ranges population from mainland Victoria. This analysis revealed low levels of allelic diversity (1.7 ± 0.2 to 2.7 ± 0.5) and heterozygosity (0.208 ± 0.088 to 0.340 ± 0.110) in the three South Australian koala populations relative to the Strzelecki Ranges population, which has the highest levels of allelic diversity (4.7 ± 1.1) and heterozygosity (0.476 ± 0.122) in Victoria. Second, we measured the incidence of testicular aplasia, a unilateral or bilateral failure in testicular development, in the Eyre Peninsula and Kangaroo Is. populations, and in the ultimate founding population at French Is. Testicular aplasia was present at a frequency of 4.3% in French Is., 12.8% in Kangaroo Is. and 23.9% in the Eyre Peninsula, but was undetectable in the non‐bottlenecked Pilliga State Forest population of New South Wales. The incidence of testicular aplasia correlated positively with effective inbreeding coefficients derived from heterozygosity values (0.13 ± 0.06 in the Pilliga State Forest, 0.57 ± 0.17 in French Is., 0.63 ± 0.12 on Kangaroo Is. and 0.77 ± 0.12 in the Eyre Peninsula), which may indicate inbreeding depression. These findings are of concern when evaluating the long‐term conservation and viability of the South Australian koala populations, which may benefit from genetic augmentation in the future. Finally, unconfirmed reports suggested that animals from other states in Australia were introduced into the Mt Lofty Ranges population. Therefore, we quantified differentiation between the three South Australian populations and the Strzelecki Ranges and French Is. populations, based on microsatellites and mtDNA d‐loop region variation. R‐statistics and Goldstein's delta mu square distance revealed that differentiation at nuclear loci between populations paralleled known recent population history, except for the close relationship between Mt Lofty Ranges and French Is. This suggested a recent contribution to the Mt Lofty Ranges populations of animals derived from the French Is. translocation program. Furthermore, mtDNA d‐loop analysis found no evidence of contributions to the gene pool from animals of New South Wales or Queensland stock, implying that the population was derived exclusively from Victorian stock.
Bipedal hopping is used by macropods, including rat-kangaroos, wallabies and kangaroos (superfamily Macropodoidea). Interspecific scaling of the ankle extensor muscle-tendon units in the lower hindlimbs of these hopping bipeds shows that peak tendon stress increases disproportionately with body size. Consequently, large kangaroos store and recover more strain energy in their tendons, making hopping more efficient, but their tendons are at greater risk of rupture. This is the first intraspecific scaling analysis on the functional morphology of the ankle extensor muscle-tendon units (gastrocnemius, plantaris and flexor digitorum longus) in one of the largest extant species of hopping mammal, the western grey kangaroo Macropus fuliginosus (5.8-70.5 kg post-pouch body mass). The effective mechanical advantage of the ankle extensors does not vary with post-pouch body mass, scaling with an exponent not significantly different from 0.0. Therefore, larger kangaroos balance rotational moments around the ankle by generating muscle forces proportional to weight-related gravitational forces. Maximum force is dependent upon the physiological cross-sectional area of the muscle, which we found scales geometrically with a mean exponent of only 0.67, rather than 1.0. Therefore, larger kangaroos are limited in their capacity to oppose large external forces around the ankle, potentially compromising fast or accelerative hopping. The strain energy return capacity of the ankle extensor tendons increases with a mean exponent of ~1.0, which is much shallower than the exponent derived from interspecific analyses of hopping mammals (~1.4-1.9). Tendon safety factor (ratio of rupture stress to estimated peak hopping stress) is lowest in the gastrocnemius (< 2), and it decreases with body mass with an exponent of -0.15, extrapolating to a predicted rupture at 160 kg. Extinct giant kangaroos weighing 250 kg could therefore not have engaged in fast hopping using 'scaled-up' lower hindlimb morphology of extant western grey kangaroos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.